Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 6-7, Juin–Juillet 2016
Page(s) 591 - 597
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163206022
Publié en ligne 12 juillet 2016
  1. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol 2015 ; 5 : 1027–1059. [CrossRef] [PubMed]
  2. Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA. Cellular dynamics in the muscle satellite cell niche. EMBO Rep 2013 ; 14 : 1062–1072. [CrossRef] [PubMed]
  3. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 2014 ; 14 : 392–404. [CrossRef] [PubMed]
  4. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol 2013 ; 14 : 986–995. [CrossRef] [PubMed]
  5. Brigitte M, Schilte C, Plonquet A, et al. Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheum 2010 ; 62 : 268–279. [CrossRef] [PubMed]
  6. Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010 ; 10 : 427–439. [CrossRef] [PubMed]
  7. Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol 2005 ; 6 : 135–142. [CrossRef] [PubMed]
  8. Duchesne E, Tremblay M-H, Côté CH. Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2. BMC Musculoskelet Disord 2011 ; 12 : 235. [CrossRef] [PubMed]
  9. Duchesne E, Bouchard P, Roussel MP, Côté CH. Mast cells can regulate skeletal muscle cell proliferation by multiple mechanisms. Muscle Nerve 2013 ; 48 : 403–414. [CrossRef]
  10. Dumont N, Lepage K, Côté CH, Frenette J. Mast cells can modulate leukocyte accumulation and skeletal muscle function following hindlimb unloading. J Appl Physiol (Bethesda Md 1985) 2007 ; 103 : 97–104. [CrossRef]
  11. Dumas A, Pouliot M. Le neutrophile : ennemi ou ami ? Med Sci (Paris) 2009 ; 25 : 699–704. [CrossRef] [EDP Sciences] [PubMed]
  12. Teixeira CFP, Zamunér SR, Zuliani JP, et al. Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected with Bothrops asper snake venom. Muscle Nerve 2003 ; 28 : 449–459. [CrossRef]
  13. Iwahori Y, Ishiguro N, Shimizu T, et al. Selective neutrophil depletion with monoclonal antibodies attenuates ischemia/reperfusion injury in skeletal muscle. J Reconstr Microsurg 1998 ; 14 : 109–116. [CrossRef] [PubMed]
  14. Dumont N, Bouchard P, Frenette J. Neutrophil-induced skeletal muscle damage: a calculated and controlled response following hindlimb unloading and reloading. Am J Physiol Regul Integr Comp Physiol 2008 ; 295 : R1831–R1838. [CrossRef] [PubMed]
  15. Heredia JE, Mukundan L, Chen FM, et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 2013 ; 153 : 376–388. [CrossRef] [PubMed]
  16. Scapini P, Lapinet-Vera JA, Gasperini S, et al. The neutrophil as a cellular source of chemokines. Immunol Rev 2000 ; 177 : 195–203. [CrossRef] [PubMed]
  17. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003 ; 19 : 71–82. [CrossRef] [PubMed]
  18. Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007 ; 204 : 1057–1069. [CrossRef] [PubMed]
  19. Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007 ; 317 : 666–670. [CrossRef] [PubMed]
  20. Côté CH, Bouchard P, van Rooijen N, et al. Monocyte depletion increases local proliferation of macrophage subsets after skeletal muscle injury. BMC Musculoskelet Disord 2013 ; 14 : 359. [CrossRef] [PubMed]
  21. Segawa M, Fukada S, Yamamoto Y, et al. Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp Cell Res 2008 ; 314 : 3232–3244. [CrossRef] [PubMed]
  22. Dumont N, Frenette J. Macrophages protect against muscle atrophy and promote muscle recovery in vivo and in vitro: a mechanism partly dependent on the insulin-like growth factor-1 signaling molecule. Am J Pathol 2010 ; 176 : 2228–2235. [CrossRef] [PubMed]
  23. Ruffell D, Mourkioti F, Gambardella A, et al. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci USA 2009 ; 106 : 17475–17480. [CrossRef]
  24. Villalta SA, Nguyen HX, Deng B, et al. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 2009 ; 18 : 482–496. [CrossRef] [PubMed]
  25. Saclier M, Yacoub-Youssef H, Mackey AL, et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells 2013 ; 31 : 384–396. [CrossRef] [PubMed]
  26. Sonnet C, Lafuste P, Arnold L, et al. Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems. J Cell Sci 2006 ; 119 : 2497–2507. [CrossRef] [PubMed]
  27. Villalta SA, Rosenthal W, Martinez L, et al. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci Transl Med 2014 ; 6 : 258ra142. [CrossRef] [PubMed]
  28. Al-Shanti N, Durcan P, Al-Dabbagh S, et al. Activated lymphocytes secretome inhibits differentiation and induces proliferation of C2C12 myoblasts. Cell Physiol Biochem 2014 ; 33 : 117–128. [CrossRef] [PubMed]
  29. Castiglioni A, Corna G, Rigamonti E, et al. FOXP3+ T Cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLoS One 2015 ; 10 : e0128094. [CrossRef] [PubMed]
  30. Burzyn D, Kuswanto W, Kolodin D, et al. A special population of regulatory T cells potentiates muscle repair. Cell 2013 ; 155 : 1282–1295. [CrossRef] [PubMed]
  31. Dadgar S, Wang Z, Johnston H, et al. Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. J Cell Biol 2014 ; 207 : 139–158. [CrossRef] [PubMed]
  32. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol 2015 ; 5 : 1027–1059. [CrossRef] [PubMed]
  33. Hodgetts S, Radley H, Davies M, Grounds MD. Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord 2006 ; 16 : 591–602. [CrossRef] [PubMed]
  34. Radley HG, Grounds MD. Cromolyn administration (to block mast cell degranulation) reduces necrosis of dystrophic muscle in mdx mice. Neurobiol Dis 2006 ; 23 : 387–397. [CrossRef] [PubMed]
  35. Lemos DR, Babaeijandaghi F, Low M, et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 2015 ; 21 : 786–794. [CrossRef] [PubMed]
  36. Farini A, Meregalli M, Belicchi M, et al. T and B lymphocyte depletion has a marked effect on the fibrosis of dystrophic skeletal muscles in the scid/mdx mouse. J Pathol 2007 ; 213 : 229–238. [CrossRef] [PubMed]
  37. Kharraz Y, Guerra J, Mann CJ, et al. Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediators Inflamm 2013 ; 2013 : 491497. [CrossRef] [PubMed]
  38. Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Dev Camb Engl 2015 ; 142 : 1572–1581.
  39. Przybyla B, Gurley C, Harvey JF, et al. Aging alters macrophage properties in human skeletal muscle both at rest and in response to acute resistance exercise. Exp Gerontol 2006 ; 41 : 320–327. [CrossRef] [PubMed]
  40. Mahbub S, Deburghgraeve CR, Kovacs EJ. Advanced age impairs macrophage polarization. J Interferon Cytokine Res 2012 ; 32 : 18–26. [CrossRef] [PubMed]
  41. Paliwal P, Pishesha N, Wijaya D, Conboy IM. Age dependent increase in the levels of osteopontin inhibits skeletal muscle regeneration. Aging 2012 ; 4 : 553–566. [CrossRef] [PubMed]
  42. Peake J, Gatta PD, Cameron-Smith D. Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 2010 ; 298 : R1485–R1495. [CrossRef] [PubMed]
  43. Villalta SA, Rosenberg AS, Bluestone JA. The immune system in Duchenne muscular dystrophy: Friend or foe. Rare Dis 2015 ; 3 : e1010966. [CrossRef] [PubMed]
  44. Chazaud B, Chrétien F, Gherardi RK. Les macrophages régulent les différentes phases de la régéneration musculaire. Med Sci (Paris) 2007 ; 23 : 794–795. [CrossRef] [EDP Sciences] [PubMed]
  45. Marsolais D, Frenette J. Inflammation et réparation tendineusse. Med Sci (Paris) 2005 ; 21 : 181–186. [CrossRef] [EDP Sciences]
  46. De Luca A. Pre-clinical drug tests in the mdx mouse as a model of dystrophinopathies: an overview. Acta Myol 2012 ; 31 : 40–47. [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.