Free Access
Med Sci (Paris)
Volume 32, Number 6-7, Juin–Juillet 2016
Page(s) 598 - 605
Section M/S Revues
Published online 12 July 2016
  1. Bobinnec Y. L’apport des modèles animaux en biologie cellulaire. Med Sci (Paris) 2003 ; 19 : 248–251. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Sugahara R, Mon H, Lee JM, Kusakabe T. Monoubiquitination-dependent chromatin loading of FancD2 in silkworms, a species lacking the FA core complex. Gene 2012 ; 501 : 180–187. [Google Scholar]
  3. De Winter JP, Joenje H. The genetic and molecular basis of Fanconi anemia. Mutat Res 2009 ; 668 : 11–19. [CrossRef] [PubMed] [Google Scholar]
  4. Youds JL, Barber LJ, Boulton SJ C. elegans: A model of Fanconi anemia and ICL repair. Mutat Res 2009 ; 668 : 103–116. [CrossRef] [PubMed] [Google Scholar]
  5. Titus TA, Selvig DR, Qin B, et al. The Fanconi anemia gene network is conserved from zebrafish to human. Gene 2006 ; 371 : 211–223. [Google Scholar]
  6. Papadopoulo D, Moustacchi E. L’anémie de Fanconi : gènes et fonction(s) revisités. Med Sci (Paris) 2005 ; 21 : 730–736. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Smogorzewska A, Matsuoka S, Vinciguerra P, et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 2007 ; 129 : 289–301. [PubMed] [Google Scholar]
  8. Adamo A, Collis SJ, Adelman CA, et al. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol Cell 2010 ; 39 : 25–35. [CrossRef] [PubMed] [Google Scholar]
  9. Nijman SM, Huang TT, Dirac AM, et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 2005 ; 17 : 331–339. [CrossRef] [PubMed] [Google Scholar]
  10. Fan Q, Zhang F, Barrett B, et al. A role for monoubiquitinated FANCD2 at telomeres in ALT cells. Nucleic Acids Res 2009 ; 37 : 1740–1754. [CrossRef] [PubMed] [Google Scholar]
  11. Collis SJ, Barber LJ, Ward JD, et al. C. elegans FANCD2 responds to replication stress and functions in interstrand cross-link repair. DNA Repair 2006 ; 5 : 1398–1406. [CrossRef] [PubMed] [Google Scholar]
  12. Garcia-Higuera I, Taniguchi T, Ganesan S, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001 ; 7 : 249–262. [CrossRef] [PubMed] [Google Scholar]
  13. Dernburg AF, McDonald K, Moulder G, et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 1998 ; 94 : 387–398. [PubMed] [Google Scholar]
  14. Cheung I, Schertzer M, Rose A, Lansdorp PM. Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nat Genet 2002 ; 31 : 405–409. [PubMed] [Google Scholar]
  15. Wu Y, Shin-ya K, Brosh RM. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 2008 ; 28 : 4116–4128. [CrossRef] [PubMed] [Google Scholar]
  16. Marek LR, Bale AE. Drosophila homologs of FANCD2 and FANCL function in DNA repair. DNA Repair 2006 ; 5 : 1317–1326. [CrossRef] [PubMed] [Google Scholar]
  17. Kuo HK, McMahan S, Rota CM, Kohl KP. Drosophila FANCM helicase prevents spontaneous mitotic crossovers generated by the MUS81 and SLX1 nucleases. Genetics 2014 ; 198 : 935–945. [PubMed] [Google Scholar]
  18. Titus TA, Yan Y-LL, Wilson C, et al. The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics. Mutat Res 2009 ; 668 : 117–132. [CrossRef] [PubMed] [Google Scholar]
  19. Scata KA, El-Deiry WS. Zebrafish: swimming towards a role for fanconi genes in DNA repair. Cancer Biol Ther 2004 ; 3 : 501–502. [PubMed] [Google Scholar]
  20. Rodríguez-Marí A, Cañestro C, BreMiller RA, et al. Sex Reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis. PLoS Genet 2010 ; 6 : e1001034. [CrossRef] [PubMed] [Google Scholar]
  21. Rodríguez-Marí A, Wilson C, Titus TA, et al. Roles of brca2 (fancd1) in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish. PLoS Genet 2011 ; 7 : e1001357. [CrossRef] [PubMed] [Google Scholar]
  22. Parmar K, D’Andrea A, Niedernhofer L. Mouse models of Fanconi anemia. Mutat Res 2009 ; 668 : 133–140. [CrossRef] [PubMed] [Google Scholar]
  23. Bakker S, de Winter J, te Riele H. Learning from a paradox: recent insights into Fanconi anaemia through studying mouse models. Dis Model Mech 2013 ; 6 : 40–47. [CrossRef] [PubMed] [Google Scholar]
  24. Kim J, Parmar K, Huang M, et al. Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev Cell 2009 ; 16 : 314–320. [CrossRef] [PubMed] [Google Scholar]
  25. Reliene R, Yamamoto ML, Rao PN, Schiestl RH. Genomic instability in mice is greater in Fanconi anemia caused by deficiency of Fancd2 than Fancg. Cancer Res 2010 ; 70 : 9703–9710. [Google Scholar]
  26. Noll M, Battaile K, Bateman R, et al. Fanconi anemia group A and C double-mutant mice: functional evidence for a multi-protein Fanconi anemia complex. Exp Hematol 2002 ; 30 : 679–688. [CrossRef] [PubMed] [Google Scholar]
  27. Pulliam-Leath AC, Ciccone SL, Nalepa G, et al. Genetic disruption of both Fancc and Fancg in mice recapitulates the hematopoietic manifestations of Fanconi anemia. Blood 2010 ; 116 : 2915–2920. [CrossRef] [PubMed] [Google Scholar]
  28. van de Vrugt HJ, Koomen M, Bakker S, et al. Evidence for complete epistasis of null mutations in murine Fanconi anemia genes Fanca and Fancg. DNA Repair 2011 ; 10 : 1252–1261. [CrossRef] [PubMed] [Google Scholar]
  29. Langevin F, Crossan GP, Rosado IV, et al. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 2011 ; 475 : 53–58. [CrossRef] [PubMed] [Google Scholar]
  30. Garaycoechea JI, Crossan GP, Langevin F, et al. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 2012 ; 489 : 571–575. [CrossRef] [PubMed] [Google Scholar]
  31. Oberbeck N, Langevin F, King G, de Wind N. Maternal aldehyde elimination during pregnancy preserves the fetal genome. Mol Cell 2014 ; 55 : 807–817. [CrossRef] [PubMed] [Google Scholar]
  32. Crabb DW, Matsumoto M, Chang D, You M. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc 2004 ; 63 : 49–63. [CrossRef] [PubMed] [Google Scholar]
  33. Marietta C, Thompson LH, Lamerdin JE, Brooks PJ. Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: Implications for alcohol-related carcinogenesis. Mutat Res 2009 ; 664 : 77–83. [CrossRef] [PubMed] [Google Scholar]
  34. Pontel LB, Rosado IV, Burgos-Barragan G, et al. Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen. Mol Cell 2015 ; 60 : 177–188. [CrossRef] [PubMed] [Google Scholar]
  35. Rosado IV, Langevin F, Crossan GP, et al. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nat Struct Mol Biol 2011 ; 18 : 1432–1434. [CrossRef] [PubMed] [Google Scholar]
  36. Hadjur S, Ung K, Wadsworth L, et al. Defective hematopoiesis and hepatic steatosis in mice with combined deficiencies of the genes encoding Fancc and Cu/Zn superoxide dismutase. Blood 2001 ; 98 : 1003–1011. [CrossRef] [PubMed] [Google Scholar]
  37. Garaycoechea JI, Patel KJ. Why does the bone marrow fail in Fanconi anemia? Blood 2014 ; 123 : 26–34. [CrossRef] [PubMed] [Google Scholar]
  38. Houghtaling S, Timmers C, Noll M, et al. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev 2003 ; 17 : 2021–2035. [CrossRef] [PubMed] [Google Scholar]
  39. Bakker ST, van de Vrugt HJ, Visser JA, et al. Fancf-deficient mice are prone to develop ovarian tumours. J Pathol 2012 ; 226 : 28–39. [CrossRef] [PubMed] [Google Scholar]
  40. Freie B, Li X, Ciccone SL, et al. Fanconi anemia type C and p53 cooperate in apoptosis and tumorigenesis. Blood 2003 ; 102 : 4146–4152. [CrossRef] [PubMed] [Google Scholar]
  41. Houghtaling S, Granville L, Akkari Y, et al. Heterozygosity for p53 (Trp53+/-) accelerates epithelial tumor formation in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Cancer Res 2005 ; 65 : 85–91. [Google Scholar]
  42. Rhee DB, Wang Y, Mizesko M, et al. FANCC suppresses short telomere-initiated telomere sister chromatid exchange. Hum Mol Genet 2010 ; 19 : 879–887. [CrossRef] [PubMed] [Google Scholar]
  43. Agoulnik AI, Lu B, Zhu Q, et al. A novel gene, Pog, is necessary for primordial germ cell proliferation in the mouse and underlies the germ cell deficient mutation, gcd. Hum Mol Genet 2002 ; 11 : 3047–3053. [CrossRef] [PubMed] [Google Scholar]
  44. Nadler JJ, Braun RE. Fanconi anemia complementation group C is required for proliferation of murine primordial germ cells. Genesis 2000 ; 27 : 117–123. [CrossRef] [PubMed] [Google Scholar]
  45. Raya A, Rodríguez-Pizà I, Guenechea G, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 2009 ; 460 : 53–59. [CrossRef] [PubMed] [Google Scholar]
  46. Marión RM, Strati K, Li H, et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 2009 ; 460 : 1149–1153. [CrossRef] [PubMed] [Google Scholar]
  47. Crossan G, van der Weyden L, Rosado I, et al. Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia. Nature Genet 2011 ; 43 : 147–152. [CrossRef] [PubMed] [Google Scholar]
  48. Sareen A, Chaudhury I, Adams N, Sobeck A. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase. Nucleic Acids Res 2012 ; 40 : 8425–8439. [CrossRef] [PubMed] [Google Scholar]
  49. Sato K, Ishiai M, Toda K, et al. Histone chaperone activity of Fanconi anemia proteins, FANCD2 and FANCI, is required for DNA crosslink repair. EMBO J 2012 ; 31 : 3524–3536. [CrossRef] [PubMed] [Google Scholar]
  50. Kohlhase S, Bogdanova NV, Schürmann P, et al. Mutation analysis of the ERCC4/FANCQ gene in hereditary breast cancer. PloS One 2014 ; 9 : e85334. [CrossRef] [PubMed] [Google Scholar]
  51. Lossaint G, Larroque M, Ribeyre C, et al. FANCD2 binds MCM proteins and controls replisome function upon activation of s phase checkpoint signaling. Mol Cell 2013 ; 51 : 678–690. [CrossRef] [PubMed] [Google Scholar]
  52. Chaudhury I, Sareen A, Raghunandan M, Sobeck A. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res 2013 ; 41 : 6444–6459. [CrossRef] [PubMed] [Google Scholar]
  53. Liu TX, Howlett NG, Deng M, et al. Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis. Dev Cell 2003 ; 5 : 903–914. [CrossRef] [PubMed] [Google Scholar]
  54. Lee KY, Yang I, Park JE, et al. Developmental stage- and DNA damage-specific functions of C. elegans FANCD2. Biochem Biophys Res Commun 2007 ; 352 : 479–485. [CrossRef] [PubMed] [Google Scholar]
  55. Langheinrich U. Zebrafish: a new model on the pharmaceutical catwalk. Bioessays 2003 ; 25 : 904–912. [CrossRef] [PubMed] [Google Scholar]
  56. Zhang QSS, Eaton L, Snyder ER, et al. Tempol protects against oxidative damage and delays epithelial tumor onset in Fanconi anemia mice. Cancer Res 2008 ; 68 : 1601–1608. [CrossRef] [Google Scholar]
  57. Varshney GK, Lu J, Gildea DE, et al. A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome Res 2013 ; 23 : 727–735. [CrossRef] [PubMed] [Google Scholar]
  58. Lanneaux J, Poidvin A, Soole F, et al. L’anémie de Fanconi en 2012: diagnostic, suivi pédiatrique, traitement. Arch Pediatr 2012 ; 19 : 1100–1109. [CrossRef] [PubMed] [Google Scholar]
  59. Auerbach AD, Wolman SR. Susceptibility of Fanconi’s anaemia fibroblasts to chromosome damage by carcinogens. Nature 1976 ; 261 : 494–496. [CrossRef] [PubMed] [Google Scholar]
  60. Force A, Lynch M, Pickett FB, et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999 ; 151 : 1531–1545. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.