Accès gratuit
Numéro |
Med Sci (Paris)
Volume 32, Numéro 6-7, Juin–Juillet 2016
|
|
---|---|---|
Page(s) | 598 - 605 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20163206023 | |
Publié en ligne | 12 juillet 2016 |
- Bobinnec Y. L’apport des modèles animaux en biologie cellulaire. Med Sci (Paris) 2003 ; 19 : 248–251. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Sugahara R, Mon H, Lee JM, Kusakabe T. Monoubiquitination-dependent chromatin loading of FancD2 in silkworms, a species lacking the FA core complex. Gene 2012 ; 501 : 180–187. [Google Scholar]
- De Winter JP, Joenje H. The genetic and molecular basis of Fanconi anemia. Mutat Res 2009 ; 668 : 11–19. [CrossRef] [PubMed] [Google Scholar]
- Youds JL, Barber LJ, Boulton SJ C. elegans: A model of Fanconi anemia and ICL repair. Mutat Res 2009 ; 668 : 103–116. [CrossRef] [PubMed] [Google Scholar]
- Titus TA, Selvig DR, Qin B, et al. The Fanconi anemia gene network is conserved from zebrafish to human. Gene 2006 ; 371 : 211–223. [Google Scholar]
- Papadopoulo D, Moustacchi E. L’anémie de Fanconi : gènes et fonction(s) revisités. Med Sci (Paris) 2005 ; 21 : 730–736. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Smogorzewska A, Matsuoka S, Vinciguerra P, et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 2007 ; 129 : 289–301. [PubMed] [Google Scholar]
- Adamo A, Collis SJ, Adelman CA, et al. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol Cell 2010 ; 39 : 25–35. [CrossRef] [PubMed] [Google Scholar]
- Nijman SM, Huang TT, Dirac AM, et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 2005 ; 17 : 331–339. [CrossRef] [PubMed] [Google Scholar]
- Fan Q, Zhang F, Barrett B, et al. A role for monoubiquitinated FANCD2 at telomeres in ALT cells. Nucleic Acids Res 2009 ; 37 : 1740–1754. [CrossRef] [PubMed] [Google Scholar]
- Collis SJ, Barber LJ, Ward JD, et al. C. elegans FANCD2 responds to replication stress and functions in interstrand cross-link repair. DNA Repair 2006 ; 5 : 1398–1406. [CrossRef] [PubMed] [Google Scholar]
- Garcia-Higuera I, Taniguchi T, Ganesan S, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001 ; 7 : 249–262. [CrossRef] [PubMed] [Google Scholar]
- Dernburg AF, McDonald K, Moulder G, et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 1998 ; 94 : 387–398. [PubMed] [Google Scholar]
- Cheung I, Schertzer M, Rose A, Lansdorp PM. Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nat Genet 2002 ; 31 : 405–409. [PubMed] [Google Scholar]
- Wu Y, Shin-ya K, Brosh RM. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 2008 ; 28 : 4116–4128. [CrossRef] [PubMed] [Google Scholar]
- Marek LR, Bale AE. Drosophila homologs of FANCD2 and FANCL function in DNA repair. DNA Repair 2006 ; 5 : 1317–1326. [CrossRef] [PubMed] [Google Scholar]
- Kuo HK, McMahan S, Rota CM, Kohl KP. Drosophila FANCM helicase prevents spontaneous mitotic crossovers generated by the MUS81 and SLX1 nucleases. Genetics 2014 ; 198 : 935–945. [PubMed] [Google Scholar]
- Titus TA, Yan Y-LL, Wilson C, et al. The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics. Mutat Res 2009 ; 668 : 117–132. [CrossRef] [PubMed] [Google Scholar]
- Scata KA, El-Deiry WS. Zebrafish: swimming towards a role for fanconi genes in DNA repair. Cancer Biol Ther 2004 ; 3 : 501–502. [PubMed] [Google Scholar]
- Rodríguez-Marí A, Cañestro C, BreMiller RA, et al. Sex Reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis. PLoS Genet 2010 ; 6 : e1001034. [CrossRef] [PubMed] [Google Scholar]
- Rodríguez-Marí A, Wilson C, Titus TA, et al. Roles of brca2 (fancd1) in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish. PLoS Genet 2011 ; 7 : e1001357. [CrossRef] [PubMed] [Google Scholar]
- Parmar K, D’Andrea A, Niedernhofer L. Mouse models of Fanconi anemia. Mutat Res 2009 ; 668 : 133–140. [CrossRef] [PubMed] [Google Scholar]
- Bakker S, de Winter J, te Riele H. Learning from a paradox: recent insights into Fanconi anaemia through studying mouse models. Dis Model Mech 2013 ; 6 : 40–47. [CrossRef] [PubMed] [Google Scholar]
- Kim J, Parmar K, Huang M, et al. Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev Cell 2009 ; 16 : 314–320. [CrossRef] [PubMed] [Google Scholar]
- Reliene R, Yamamoto ML, Rao PN, Schiestl RH. Genomic instability in mice is greater in Fanconi anemia caused by deficiency of Fancd2 than Fancg. Cancer Res 2010 ; 70 : 9703–9710. [Google Scholar]
- Noll M, Battaile K, Bateman R, et al. Fanconi anemia group A and C double-mutant mice: functional evidence for a multi-protein Fanconi anemia complex. Exp Hematol 2002 ; 30 : 679–688. [CrossRef] [PubMed] [Google Scholar]
- Pulliam-Leath AC, Ciccone SL, Nalepa G, et al. Genetic disruption of both Fancc and Fancg in mice recapitulates the hematopoietic manifestations of Fanconi anemia. Blood 2010 ; 116 : 2915–2920. [CrossRef] [PubMed] [Google Scholar]
- van de Vrugt HJ, Koomen M, Bakker S, et al. Evidence for complete epistasis of null mutations in murine Fanconi anemia genes Fanca and Fancg. DNA Repair 2011 ; 10 : 1252–1261. [CrossRef] [PubMed] [Google Scholar]
- Langevin F, Crossan GP, Rosado IV, et al. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 2011 ; 475 : 53–58. [CrossRef] [PubMed] [Google Scholar]
- Garaycoechea JI, Crossan GP, Langevin F, et al. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 2012 ; 489 : 571–575. [CrossRef] [PubMed] [Google Scholar]
- Oberbeck N, Langevin F, King G, de Wind N. Maternal aldehyde elimination during pregnancy preserves the fetal genome. Mol Cell 2014 ; 55 : 807–817. [CrossRef] [PubMed] [Google Scholar]
- Crabb DW, Matsumoto M, Chang D, You M. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc 2004 ; 63 : 49–63. [CrossRef] [PubMed] [Google Scholar]
- Marietta C, Thompson LH, Lamerdin JE, Brooks PJ. Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: Implications for alcohol-related carcinogenesis. Mutat Res 2009 ; 664 : 77–83. [CrossRef] [PubMed] [Google Scholar]
- Pontel LB, Rosado IV, Burgos-Barragan G, et al. Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen. Mol Cell 2015 ; 60 : 177–188. [CrossRef] [PubMed] [Google Scholar]
- Rosado IV, Langevin F, Crossan GP, et al. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nat Struct Mol Biol 2011 ; 18 : 1432–1434. [CrossRef] [PubMed] [Google Scholar]
- Hadjur S, Ung K, Wadsworth L, et al. Defective hematopoiesis and hepatic steatosis in mice with combined deficiencies of the genes encoding Fancc and Cu/Zn superoxide dismutase. Blood 2001 ; 98 : 1003–1011. [CrossRef] [PubMed] [Google Scholar]
- Garaycoechea JI, Patel KJ. Why does the bone marrow fail in Fanconi anemia? Blood 2014 ; 123 : 26–34. [CrossRef] [PubMed] [Google Scholar]
- Houghtaling S, Timmers C, Noll M, et al. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev 2003 ; 17 : 2021–2035. [CrossRef] [PubMed] [Google Scholar]
- Bakker ST, van de Vrugt HJ, Visser JA, et al. Fancf-deficient mice are prone to develop ovarian tumours. J Pathol 2012 ; 226 : 28–39. [CrossRef] [PubMed] [Google Scholar]
- Freie B, Li X, Ciccone SL, et al. Fanconi anemia type C and p53 cooperate in apoptosis and tumorigenesis. Blood 2003 ; 102 : 4146–4152. [CrossRef] [PubMed] [Google Scholar]
- Houghtaling S, Granville L, Akkari Y, et al. Heterozygosity for p53 (Trp53+/-) accelerates epithelial tumor formation in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Cancer Res 2005 ; 65 : 85–91. [Google Scholar]
- Rhee DB, Wang Y, Mizesko M, et al. FANCC suppresses short telomere-initiated telomere sister chromatid exchange. Hum Mol Genet 2010 ; 19 : 879–887. [CrossRef] [PubMed] [Google Scholar]
- Agoulnik AI, Lu B, Zhu Q, et al. A novel gene, Pog, is necessary for primordial germ cell proliferation in the mouse and underlies the germ cell deficient mutation, gcd. Hum Mol Genet 2002 ; 11 : 3047–3053. [CrossRef] [PubMed] [Google Scholar]
- Nadler JJ, Braun RE. Fanconi anemia complementation group C is required for proliferation of murine primordial germ cells. Genesis 2000 ; 27 : 117–123. [CrossRef] [PubMed] [Google Scholar]
- Raya A, Rodríguez-Pizà I, Guenechea G, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 2009 ; 460 : 53–59. [CrossRef] [PubMed] [Google Scholar]
- Marión RM, Strati K, Li H, et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 2009 ; 460 : 1149–1153. [CrossRef] [PubMed] [Google Scholar]
- Crossan G, van der Weyden L, Rosado I, et al. Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia. Nature Genet 2011 ; 43 : 147–152. [CrossRef] [PubMed] [Google Scholar]
- Sareen A, Chaudhury I, Adams N, Sobeck A. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase. Nucleic Acids Res 2012 ; 40 : 8425–8439. [CrossRef] [PubMed] [Google Scholar]
- Sato K, Ishiai M, Toda K, et al. Histone chaperone activity of Fanconi anemia proteins, FANCD2 and FANCI, is required for DNA crosslink repair. EMBO J 2012 ; 31 : 3524–3536. [CrossRef] [PubMed] [Google Scholar]
- Kohlhase S, Bogdanova NV, Schürmann P, et al. Mutation analysis of the ERCC4/FANCQ gene in hereditary breast cancer. PloS One 2014 ; 9 : e85334. [CrossRef] [PubMed] [Google Scholar]
- Lossaint G, Larroque M, Ribeyre C, et al. FANCD2 binds MCM proteins and controls replisome function upon activation of s phase checkpoint signaling. Mol Cell 2013 ; 51 : 678–690. [CrossRef] [PubMed] [Google Scholar]
- Chaudhury I, Sareen A, Raghunandan M, Sobeck A. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res 2013 ; 41 : 6444–6459. [CrossRef] [PubMed] [Google Scholar]
- Liu TX, Howlett NG, Deng M, et al. Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis. Dev Cell 2003 ; 5 : 903–914. [CrossRef] [PubMed] [Google Scholar]
- Lee KY, Yang I, Park JE, et al. Developmental stage- and DNA damage-specific functions of C. elegans FANCD2. Biochem Biophys Res Commun 2007 ; 352 : 479–485. [CrossRef] [PubMed] [Google Scholar]
- Langheinrich U. Zebrafish: a new model on the pharmaceutical catwalk. Bioessays 2003 ; 25 : 904–912. [CrossRef] [PubMed] [Google Scholar]
- Zhang QSS, Eaton L, Snyder ER, et al. Tempol protects against oxidative damage and delays epithelial tumor onset in Fanconi anemia mice. Cancer Res 2008 ; 68 : 1601–1608. [CrossRef] [Google Scholar]
- Varshney GK, Lu J, Gildea DE, et al. A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome Res 2013 ; 23 : 727–735. [CrossRef] [PubMed] [Google Scholar]
- Lanneaux J, Poidvin A, Soole F, et al. L’anémie de Fanconi en 2012: diagnostic, suivi pédiatrique, traitement. Arch Pediatr 2012 ; 19 : 1100–1109. [CrossRef] [PubMed] [Google Scholar]
- Auerbach AD, Wolman SR. Susceptibility of Fanconi’s anaemia fibroblasts to chromosome damage by carcinogens. Nature 1976 ; 261 : 494–496. [CrossRef] [PubMed] [Google Scholar]
- Force A, Lynch M, Pickett FB, et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999 ; 151 : 1531–1545. [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.