Free Access
This article has a note: [note]

Issue
Med Sci (Paris)
Volume 32, Number 4, Avril 2016
Page(s) 401 - 407
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163204019
Published online 02 May 2016
  1. Cameron FJ, Wherrett DK. Care of diabetes in children and adolescents: controversies, changes, and consensus. Lancet 2015 ; 385 : 2096–2106. [CrossRef] [PubMed] [Google Scholar]
  2. Kelly WD, Lillehei RC, Merkel FK, et al. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery 1967 ; 61 : 827–837. [PubMed] [Google Scholar]
  3. Kaufman D. State of the art of solid organ pancreas transplantation. In: 75th Scientific sessions of the American diabetes association. Boston, USA, 2015. [Google Scholar]
  4. Redfield RR, Scalea JR, Odorico JS. Simultaneous pancreas and kidney transplantation: current trends and future directions. Curr Opin Organ Transplant 2015 ; 20 : 94–102. [CrossRef] [PubMed] [Google Scholar]
  5. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000 ; 343 : 230–238. [CrossRef] [PubMed] [Google Scholar]
  6. Barton FB, Rickels MR, Alejandro R, et al. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care 2012 ; 35 : 1436–1445. [CrossRef] [PubMed] [Google Scholar]
  7. Balamurugan AN, Naziruddin B, Lockridge A, et al. Islet product characteristics and factors related to successful human islet transplantation from the Collaborative Islet Transplant Registry (CITR) 1999–2010. Am J Transplant 2014 ; 14 : 2595–2606. [CrossRef] [PubMed] [Google Scholar]
  8. Brennan DC, Kopetskie HA, Sayre PH, et al. Long-term follow-up of the Edmonton protocol of islet transplantation in the United States. Am J Transplant 2015. [Google Scholar]
  9. Ricordi C. Clinical islet transplantation update. In: 75th Scientific sessions of the American diabetes association. Boston, USA, 2015. [Google Scholar]
  10. Inverardi L. Improved graft survival in islet transplant recipients treated with G-CSF (filgrastim) and exenatide. In: 75th Scientific sessions of the American diabetes association. Boston, USA, 2015. [Google Scholar]
  11. Pepper AR, Gala-Lopez B, Pawlick R, et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol 2015 ; 33 : 518–523. [CrossRef] [PubMed] [Google Scholar]
  12. Hajizadeh-Saffar E, Tahamtani Y, Aghdami N, et al. Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Sci Rep 2015 ; 5 : 9322. [CrossRef] [PubMed] [Google Scholar]
  13. Tomei AA, Villa C, Ricordi C. Development of an encapsulated stem cell-based therapy for diabetes. Exp Opin Biol Ther 2015 ; 15 : 1321–1336. [CrossRef] [Google Scholar]
  14. Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008 ; 26 : 443–452. [CrossRef] [PubMed] [Google Scholar]
  15. D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006 ; 24 : 1392–1401. [CrossRef] [PubMed] [Google Scholar]
  16. Fujikawa T, Oh SH, Pi L, et al. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 2005 ; 166 : 1781–1791. [CrossRef] [PubMed] [Google Scholar]
  17. Blum B, Benvenisty N. The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle 2009 ; 8 : 3822–3830. [CrossRef] [PubMed] [Google Scholar]
  18. Rezania A, Bruin JE, Riedel MJ, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 2012 ; 61 : 2016–2029. [CrossRef] [PubMed] [Google Scholar]
  19. Bruin JE, Rezania A, Xu J, et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia 2013 ; 56 : 1987–1998. [CrossRef] [PubMed] [Google Scholar]
  20. Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 2014 ; 32 : 1121–1133. [CrossRef] [PubMed] [Google Scholar]
  21. Pagliuca FW, Millman JR, Gurtler M, et al. Generation of functional human pancreatic beta cells in vitro. Cell 2014 ; 159 : 428–439. [CrossRef] [PubMed] [Google Scholar]
  22. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 2015 ; 385 : 509–516. [CrossRef] [PubMed] [Google Scholar]
  23. Osafune K, Caron L, Borowiak M, et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 2008 ; 26 : 313–315. [CrossRef] [PubMed] [Google Scholar]
  24. Mfopou JK, Chen B, Mateizel I, et al. Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology 2010 ; 138 : 2233–2245, 45 e1–14. [CrossRef] [PubMed] [Google Scholar]
  25. Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011 ; 471 : 63–67. [CrossRef] [PubMed] [Google Scholar]
  26. Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 2009 ; 106 : 15768–15773. [CrossRef] [Google Scholar]
  27. Teo AK, Windmueller R, Johansson BB, et al. Derivation of human induced pluripotent stem cells from patients with maturity onset diabetes of the young. J Biol Chem 2013 ; 288 : 5353–5356. [CrossRef] [PubMed] [Google Scholar]
  28. Jiang FX, Morahan G. Pancreatic stem cells remain unresolved. Stem Cells Dev 2014 ; 23 : 2803–2812. [CrossRef] [PubMed] [Google Scholar]
  29. Lysy PA, Weir GC, Bonner-Weir S. Making beta cells from adult cells within the pancreas. Curr Diab Rep 2013 ; 13 : 695–703. [CrossRef] [PubMed] [Google Scholar]
  30. Vetere A, Choudhary A, Burns SM, Wagner BK. Targeting the pancreatic beta-cell to treat diabetes. Nat Rev Drug Discov 2014 ; 13 : 278–289. [CrossRef] [PubMed] [Google Scholar]
  31. Gershengorn MC, Hardikar AA, Wei C, et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 2004 ; 306 : 2261–2264. [CrossRef] [PubMed] [Google Scholar]
  32. Russ HA, Sintov E, Anker-Kitai L, et al. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro. PLoS One 2011 ; 6 : e25566. [CrossRef] [PubMed] [Google Scholar]
  33. Bar Y, Russ HA, Sintov E, et al. Redifferentiation of expanded human pancreatic beta-cell-derived cells by inhibition of the NOTCH pathway. J Biol Chem 2012 ; 287 : 17269–17280. [CrossRef] [PubMed] [Google Scholar]
  34. Smukler SR, Arntfield ME, Razavi R, et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 2011 ; 8 : 281–293. [CrossRef] [Google Scholar]
  35. Razavi R, Najafabadi HS, Abdullah S, et al. Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more beta-cell production. Diabetes 2015 ; 64 : 1311–1323. [CrossRef] [PubMed] [Google Scholar]
  36. Brereton MF, Vergari E, Zhang Q, Clark A. Alpha-, delta- and PP-cells: Are they the architectural cornerstones of islet structure and co-ordination ? J Histochem Cytochem 2015 ; 63 : 575–591. [CrossRef] [PubMed] [Google Scholar]
  37. Collombat P, Xu X, Ravassard P, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009 ; 138 : 449–462. [CrossRef] [PubMed] [Google Scholar]
  38. Thorel F, Nepote V, Avril I, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010 ; 464 : 1149–1154. [CrossRef] [PubMed] [Google Scholar]
  39. Habener JF, Stanojevic V. Alpha cells come of age. Trends Endocrinol Metab 2013 ; 24 : 153–163. [CrossRef] [PubMed] [Google Scholar]
  40. Courtney M, Gjernes E, Druelle N, et al. The inactivation of Arx in pancreatic alpha-cells triggers their neogenesis and conversion into functional beta-like cells. PLoS Genet 2013 ; 9 : e1003934. [CrossRef] [PubMed] [Google Scholar]
  41. Baeyens L, Bouwens L. Can beta-cells be derived from exocrine pancreas ? Diabetes Obes Metab 2008 ; 10 (suppl 4) : 170–178. [CrossRef] [PubMed] [Google Scholar]
  42. Desai BM, Oliver-Krasinski J, De Leon DD, et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J Clin Invest 2007 ; 117 : 971–977. [CrossRef] [PubMed] [Google Scholar]
  43. Murtaugh LC, Keefe MD. Regeneration and repair of the exocrine pancreas. Annu Rev Physiol 2015 ; 77 : 229–249. [CrossRef] [PubMed] [Google Scholar]
  44. Zhou Q, Brown J, Kanarek A, et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008 ; 455 : 627–632. [CrossRef] [PubMed] [Google Scholar]
  45. Li W, Cavelti-Weder C, Zhang Y, et al. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nat Biotechnol 2014 ; 32 : 1223–1230. [CrossRef] [PubMed] [Google Scholar]
  46. Yamada T, Cavelti-Weder C, Caballero F, et al. Reprogramming mouse cells with a pancreatic duct phenotype to insulin-producing beta-like cells. Endocrinology 2015 ; 156 : 2029–2038. [CrossRef] [PubMed] [Google Scholar]
  47. Rooman I, Bouwens L. Combined gastrin and epidermal growth factor treatment induces islet regeneration and restores normoglycaemia in C57Bl6/J mice treated with alloxan. Diabetologia 2004 ; 47 : 259–265. [CrossRef] [PubMed] [Google Scholar]
  48. Baeyens L, Lemper M, Leuckx G, et al. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nat Biotechnol 2014 ; 32 : 76–83. [CrossRef] [PubMed] [Google Scholar]
  49. Ray KC, Moss ME, Franklin JL, et al. Heparin-binding epidermal growth factor-like growth factor eliminates constraints on activated Kras to promote rapid onset of pancreatic neoplasia. Oncogene 2014 ; 33 : 823–831. [CrossRef] [PubMed] [Google Scholar]
  50. Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 2011 ; 240 : 530–565. [CrossRef] [PubMed] [Google Scholar]
  51. Xu X, D’Hoker J, Stange G, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008 ; 132 : 197–207. [CrossRef] [PubMed] [Google Scholar]
  52. Bonner-Weir S, Guo L, Li WC, et al. Islet neogenesis: a possible pathway for beta-cell replenishment. Rev Diabet Stud 2012 ; 9 : 407–416. [CrossRef] [PubMed] [Google Scholar]
  53. Esposito I, Segler A, Steiger K, Kloppel G. Pathology, genetics and precursors of human and experimental pancreatic neoplasms: an update. Pancreatology 2015 ; 15 : 598–610. [CrossRef] [PubMed] [Google Scholar]
  54. Yatoh S, Dodge R, Akashi T, et al. Differentiation of affinity-purified human pancreatic duct cells to beta-cells. Diabetes 2007 ; 56 : 1802–1809. [CrossRef] [PubMed] [Google Scholar]
  55. Lee J, Sugiyama T, Liu Y, et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. Elife 2013 ; 2 : e00940. [PubMed] [Google Scholar]
  56. Bonner-Weir S, Taneja M, Weir GC, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000 ; 97 : 7999–8004. [CrossRef] [Google Scholar]
  57. Seeberger KL, Dufour JM, Shapiro AM, et al. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab Invest 2006 ; 86 : 141–153. [CrossRef] [PubMed] [Google Scholar]
  58. Corritore E, Dugnani E, Pasquale V, et al. beta-Cell differentiation of human pancreatic duct-derived cells after in vitro expansion. Cell Reprogram 2014 ; 16 : 456–466. [CrossRef] [PubMed] [Google Scholar]
  59. Franc C. Le diabète. Med Sci (Paris) 2013 ; 29 : 711–714. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  60. Velho G, Bellanné-Chantelot C, Timsit J. Le MODY : modèle d’étude d’interactions génotype/phénotype dans le diabète de type 2. Med Sci (Paris) 2003 ; 19 : 854–859. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  61. Thorel F, Herrera PL. Génération de cellules β-pancréatiques par conversion spontanée de cellules α chez des souris diabétiques. Med Sci (Paris) 2010 ; 26 : 906–909. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.