Accès gratuit
Cet article a une note : [note]

Numéro
Med Sci (Paris)
Volume 32, Numéro 4, Avril 2016
Page(s) 401 - 407
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163204019
Publié en ligne 2 mai 2016
  1. Cameron FJ, Wherrett DK. Care of diabetes in children and adolescents: controversies, changes, and consensus. Lancet 2015 ; 385 : 2096–2106. [CrossRef] [PubMed]
  2. Kelly WD, Lillehei RC, Merkel FK, et al. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery 1967 ; 61 : 827–837. [PubMed]
  3. Kaufman D. State of the art of solid organ pancreas transplantation. In: 75th Scientific sessions of the American diabetes association. Boston, USA, 2015.
  4. Redfield RR, Scalea JR, Odorico JS. Simultaneous pancreas and kidney transplantation: current trends and future directions. Curr Opin Organ Transplant 2015 ; 20 : 94–102. [CrossRef] [PubMed]
  5. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000 ; 343 : 230–238. [CrossRef] [PubMed]
  6. Barton FB, Rickels MR, Alejandro R, et al. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care 2012 ; 35 : 1436–1445. [CrossRef] [PubMed]
  7. Balamurugan AN, Naziruddin B, Lockridge A, et al. Islet product characteristics and factors related to successful human islet transplantation from the Collaborative Islet Transplant Registry (CITR) 1999–2010. Am J Transplant 2014 ; 14 : 2595–2606. [CrossRef] [PubMed]
  8. Brennan DC, Kopetskie HA, Sayre PH, et al. Long-term follow-up of the Edmonton protocol of islet transplantation in the United States. Am J Transplant 2015.
  9. Ricordi C. Clinical islet transplantation update. In: 75th Scientific sessions of the American diabetes association. Boston, USA, 2015.
  10. Inverardi L. Improved graft survival in islet transplant recipients treated with G-CSF (filgrastim) and exenatide. In: 75th Scientific sessions of the American diabetes association. Boston, USA, 2015.
  11. Pepper AR, Gala-Lopez B, Pawlick R, et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol 2015 ; 33 : 518–523. [CrossRef] [PubMed]
  12. Hajizadeh-Saffar E, Tahamtani Y, Aghdami N, et al. Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Sci Rep 2015 ; 5 : 9322. [CrossRef] [PubMed]
  13. Tomei AA, Villa C, Ricordi C. Development of an encapsulated stem cell-based therapy for diabetes. Exp Opin Biol Ther 2015 ; 15 : 1321–1336. [CrossRef]
  14. Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008 ; 26 : 443–452. [CrossRef] [PubMed]
  15. D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006 ; 24 : 1392–1401. [CrossRef] [PubMed]
  16. Fujikawa T, Oh SH, Pi L, et al. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 2005 ; 166 : 1781–1791. [CrossRef] [PubMed]
  17. Blum B, Benvenisty N. The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle 2009 ; 8 : 3822–3830. [CrossRef] [PubMed]
  18. Rezania A, Bruin JE, Riedel MJ, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 2012 ; 61 : 2016–2029. [CrossRef] [PubMed]
  19. Bruin JE, Rezania A, Xu J, et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia 2013 ; 56 : 1987–1998. [CrossRef] [PubMed]
  20. Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 2014 ; 32 : 1121–1133. [CrossRef] [PubMed]
  21. Pagliuca FW, Millman JR, Gurtler M, et al. Generation of functional human pancreatic beta cells in vitro. Cell 2014 ; 159 : 428–439. [CrossRef] [PubMed]
  22. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 2015 ; 385 : 509–516. [CrossRef] [PubMed]
  23. Osafune K, Caron L, Borowiak M, et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 2008 ; 26 : 313–315. [CrossRef] [PubMed]
  24. Mfopou JK, Chen B, Mateizel I, et al. Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology 2010 ; 138 : 2233–2245, 45 e1–14. [CrossRef] [PubMed]
  25. Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011 ; 471 : 63–67. [CrossRef] [PubMed]
  26. Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 2009 ; 106 : 15768–15773. [CrossRef]
  27. Teo AK, Windmueller R, Johansson BB, et al. Derivation of human induced pluripotent stem cells from patients with maturity onset diabetes of the young. J Biol Chem 2013 ; 288 : 5353–5356. [CrossRef] [PubMed]
  28. Jiang FX, Morahan G. Pancreatic stem cells remain unresolved. Stem Cells Dev 2014 ; 23 : 2803–2812. [CrossRef] [PubMed]
  29. Lysy PA, Weir GC, Bonner-Weir S. Making beta cells from adult cells within the pancreas. Curr Diab Rep 2013 ; 13 : 695–703. [CrossRef] [PubMed]
  30. Vetere A, Choudhary A, Burns SM, Wagner BK. Targeting the pancreatic beta-cell to treat diabetes. Nat Rev Drug Discov 2014 ; 13 : 278–289. [CrossRef] [PubMed]
  31. Gershengorn MC, Hardikar AA, Wei C, et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 2004 ; 306 : 2261–2264. [CrossRef] [PubMed]
  32. Russ HA, Sintov E, Anker-Kitai L, et al. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro. PLoS One 2011 ; 6 : e25566. [CrossRef] [PubMed]
  33. Bar Y, Russ HA, Sintov E, et al. Redifferentiation of expanded human pancreatic beta-cell-derived cells by inhibition of the NOTCH pathway. J Biol Chem 2012 ; 287 : 17269–17280. [CrossRef] [PubMed]
  34. Smukler SR, Arntfield ME, Razavi R, et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 2011 ; 8 : 281–293. [CrossRef]
  35. Razavi R, Najafabadi HS, Abdullah S, et al. Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more beta-cell production. Diabetes 2015 ; 64 : 1311–1323. [CrossRef] [PubMed]
  36. Brereton MF, Vergari E, Zhang Q, Clark A. Alpha-, delta- and PP-cells: Are they the architectural cornerstones of islet structure and co-ordination ? J Histochem Cytochem 2015 ; 63 : 575–591. [CrossRef] [PubMed]
  37. Collombat P, Xu X, Ravassard P, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009 ; 138 : 449–462. [CrossRef] [PubMed]
  38. Thorel F, Nepote V, Avril I, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010 ; 464 : 1149–1154. [CrossRef] [PubMed]
  39. Habener JF, Stanojevic V. Alpha cells come of age. Trends Endocrinol Metab 2013 ; 24 : 153–163. [CrossRef] [PubMed]
  40. Courtney M, Gjernes E, Druelle N, et al. The inactivation of Arx in pancreatic alpha-cells triggers their neogenesis and conversion into functional beta-like cells. PLoS Genet 2013 ; 9 : e1003934. [CrossRef] [PubMed]
  41. Baeyens L, Bouwens L. Can beta-cells be derived from exocrine pancreas ? Diabetes Obes Metab 2008 ; 10 (suppl 4) : 170–178. [CrossRef] [PubMed]
  42. Desai BM, Oliver-Krasinski J, De Leon DD, et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J Clin Invest 2007 ; 117 : 971–977. [CrossRef] [PubMed]
  43. Murtaugh LC, Keefe MD. Regeneration and repair of the exocrine pancreas. Annu Rev Physiol 2015 ; 77 : 229–249. [CrossRef] [PubMed]
  44. Zhou Q, Brown J, Kanarek A, et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008 ; 455 : 627–632. [CrossRef] [PubMed]
  45. Li W, Cavelti-Weder C, Zhang Y, et al. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nat Biotechnol 2014 ; 32 : 1223–1230. [CrossRef] [PubMed]
  46. Yamada T, Cavelti-Weder C, Caballero F, et al. Reprogramming mouse cells with a pancreatic duct phenotype to insulin-producing beta-like cells. Endocrinology 2015 ; 156 : 2029–2038. [CrossRef] [PubMed]
  47. Rooman I, Bouwens L. Combined gastrin and epidermal growth factor treatment induces islet regeneration and restores normoglycaemia in C57Bl6/J mice treated with alloxan. Diabetologia 2004 ; 47 : 259–265. [CrossRef] [PubMed]
  48. Baeyens L, Lemper M, Leuckx G, et al. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nat Biotechnol 2014 ; 32 : 76–83. [CrossRef] [PubMed]
  49. Ray KC, Moss ME, Franklin JL, et al. Heparin-binding epidermal growth factor-like growth factor eliminates constraints on activated Kras to promote rapid onset of pancreatic neoplasia. Oncogene 2014 ; 33 : 823–831. [CrossRef] [PubMed]
  50. Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 2011 ; 240 : 530–565. [CrossRef] [PubMed]
  51. Xu X, D’Hoker J, Stange G, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008 ; 132 : 197–207. [CrossRef] [PubMed]
  52. Bonner-Weir S, Guo L, Li WC, et al. Islet neogenesis: a possible pathway for beta-cell replenishment. Rev Diabet Stud 2012 ; 9 : 407–416. [CrossRef] [PubMed]
  53. Esposito I, Segler A, Steiger K, Kloppel G. Pathology, genetics and precursors of human and experimental pancreatic neoplasms: an update. Pancreatology 2015 ; 15 : 598–610. [CrossRef] [PubMed]
  54. Yatoh S, Dodge R, Akashi T, et al. Differentiation of affinity-purified human pancreatic duct cells to beta-cells. Diabetes 2007 ; 56 : 1802–1809. [CrossRef] [PubMed]
  55. Lee J, Sugiyama T, Liu Y, et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. Elife 2013 ; 2 : e00940. [PubMed]
  56. Bonner-Weir S, Taneja M, Weir GC, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000 ; 97 : 7999–8004. [CrossRef]
  57. Seeberger KL, Dufour JM, Shapiro AM, et al. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab Invest 2006 ; 86 : 141–153. [CrossRef] [PubMed]
  58. Corritore E, Dugnani E, Pasquale V, et al. beta-Cell differentiation of human pancreatic duct-derived cells after in vitro expansion. Cell Reprogram 2014 ; 16 : 456–466. [CrossRef] [PubMed]
  59. Franc C. Le diabète. Med Sci (Paris) 2013 ; 29 : 711–714. [CrossRef] [EDP Sciences] [PubMed]
  60. Velho G, Bellanné-Chantelot C, Timsit J. Le MODY : modèle d’étude d’interactions génotype/phénotype dans le diabète de type 2. Med Sci (Paris) 2003 ; 19 : 854–859. [CrossRef] [EDP Sciences] [PubMed]
  61. Thorel F, Herrera PL. Génération de cellules β-pancréatiques par conversion spontanée de cellules α chez des souris diabétiques. Med Sci (Paris) 2010 ; 26 : 906–909. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.