Free Access
Med Sci (Paris)
Volume 32, Number 4, Avril 2016
Page(s) 394 - 400
Section M/S Revues
Published online 02 May 2016
  1. Auron A, Brophy PD. Hyperammonemia in review: pathophysiology, diagnosis, and treatment. Pediatr Nephrol 2012 ; 27 : 207–222. [CrossRef] [PubMed] [Google Scholar]
  2. Weiner ID, Verlander JW. Renal ammonia metabolism and transport. Compr Physiol 2013 ; 3 : 201–220. [PubMed] [Google Scholar]
  3. Eng CH, Yu K, Lucas J, et al. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 2010 ; 3 : ra31. [PubMed] [Google Scholar]
  4. Dubois E, Grenson M. Methylamine/ammonia uptake systems in Saccharomyces cerevisiae: multiplicity and regulation. Mol Gen Genet 1979 ; 175 : 67–76. [CrossRef] [PubMed] [Google Scholar]
  5. Marini AM, Vissers S, Urrestarazu A, et al. Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J 1994 ; 13 : 3456–3463. [PubMed] [Google Scholar]
  6. Ninnemann O, Jauniaux JC, Frommer WB. Identification of a high affinity NH4+ transporter from plants. EMBO J 1994 ; 13 : 3464–3471. [PubMed] [Google Scholar]
  7. Marini AM, Urrestarazu A, Beauwens R, et al. The Rh (rhesus) blood group polypeptides are related to NH4+ transporters. Trends Biochem. 1997 ; 22 : 460–461. [CrossRef] [Google Scholar]
  8. Huang CH, Peng J. Evolutionary conservation and diversification of Rh family genes and proteins. Proc Natl Acad Sci USA 2005 ; 102 : 15512–15517. [CrossRef] [Google Scholar]
  9. Marini AM, Soussi-Boudekou S, Vissers S, et al. A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 1997 ; 17 : 4282–4293. [CrossRef] [PubMed] [Google Scholar]
  10. Boeckstaens M, Andre B, Marini AM. The yeast ammonium transport protein Mep2 and its positive regulator, the Npr1 kinase, play an important role in normal and pseudohyphal growth on various nitrogen media through retrieval of excreted ammonium. Mol Microbiol 2007 ; 64 : 534–546. [CrossRef] [PubMed] [Google Scholar]
  11. Rafael S, Palkova Z, Janderova B, et al. Ammonia mediates communication between yeast colonies. Nature 1997 ; 390 : 532–536. [CrossRef] [PubMed] [Google Scholar]
  12. Lorenz MC, Heitman J. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 1998 ; 17 : 1236–1247. [CrossRef] [PubMed] [Google Scholar]
  13. Nakhoul NL. Lee Hamm L. Characteristics of mammalian Rh glycoproteins (SLC42 transporters) and their role in acid-base transport. Mol Aspects Med 2013 ; 34 : 629–637. [CrossRef] [PubMed] [Google Scholar]
  14. Marini AM, Matassi G, Raynal V, et al. The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 2000 ; 26 : 341–344. [CrossRef] [PubMed] [Google Scholar]
  15. Biver S, Belge H, Bourgeois S, et al. A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 2008 ; 456 : 339–343. [CrossRef] [PubMed] [Google Scholar]
  16. Deschuyteneer A, Boeckstaens M, De Mees C, et al. SNPs altering ammonium transport activity of human Rhesus factors characterized by a yeast-based functional assay. PLoS One 2013 ; 8 : e71092. [CrossRef] [PubMed] [Google Scholar]
  17. Bruce LJ, Guizouarn H, Burton NM, et al. The monovalent cation leak in overhydrated stomatocytic red blood cells results from amino acid substitutions in the Rh-associated glycoprotein. Blood 2009 ; 113 : 1350–1357. [CrossRef] [PubMed] [Google Scholar]
  18. Boeckstaens M, Andre B, Marini AM. Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the mep/amt/rh family and impact on filamentation. J Biol Chem 2008 ; 283 : 21362–21370. [CrossRef] [PubMed] [Google Scholar]
  19. Thornton J, Blakey D, Scanlon E, et al. The ammonia channel protein AmtB from Escherichia coli is a polytopic membrane protein with a cleavable signal peptide. FEMS Microbiol Lett 2006 ; 258 : 114–120. [CrossRef] [PubMed] [Google Scholar]
  20. Khademi S, O’Connell J, III, Remis J, et al. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 2004 ; 305 : 1587–1594. [CrossRef] [PubMed] [Google Scholar]
  21. Zheng L, Kostrewa D, Berneche S, et al. The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci USA 2004 ; 101 : 17090–17095. [CrossRef] [Google Scholar]
  22. Andrade SL, Dickmanns A, Ficner R, et al. Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proc Natl Acad Sci USA 2005 ; 102 : 14994–14999. [CrossRef] [Google Scholar]
  23. Lupo D, Li XD, Durand A, et al. The 1.3-A resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins. Proc Natl Acad Sci USA 2007 ; 104 : 19303–19308. [CrossRef] [Google Scholar]
  24. Li X, Jayachandran S, Nguyen H-HT, et al. Structure of the Nitrosomonas europaea Rh protein. Proc Natl Acad Sci USA 2007 ; 104 : 19279–19284. [CrossRef] [Google Scholar]
  25. Gruswitz F, Chaudhary S, Ho JD, et al. Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci USA 2010 ; 107 : 9638–9643. [CrossRef] [Google Scholar]
  26. Ludewig U. Electroneutral ammonium transport by basolateral rhesus B glycoprotein. J Physiol 2004 ; 559 : 751–759. [CrossRef] [PubMed] [Google Scholar]
  27. Ludewig U. Ion transport versus gas conduction: function of AMT/Rh-type proteins. Transfus Clin Biol 2006 ; 13 : 111–116. [CrossRef] [PubMed] [Google Scholar]
  28. Mak DO, Dang B, Weiner ID, et al. Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. Am J Physiol Ren Physiol 2006 ; 290 : F297–F305. [CrossRef] [Google Scholar]
  29. Boron WF. Sharpey-Schafer lecture: gas channels. Exp Physiol 2010 ; 95 : 1107–1130. [CrossRef] [PubMed] [Google Scholar]
  30. Geyer RR, Parker MD, Toye AM, et al. Relative CO2/NH3 permeabilities of human RhAG. RhBG and RhCG. J Membr Biol 2013 ; 246 : 915–926. [CrossRef] [Google Scholar]
  31. Coutts G, Thomas G, Blakey D, et al. Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J 2002 ; 21 : 536–545. [CrossRef] [PubMed] [Google Scholar]
  32. Gruswitz F, O’Connell III J, Stroud RM. Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. Proc Natl Acad Sci USA 2007 ; 104 : 42–47. [CrossRef] [Google Scholar]
  33. Conroy MJ, Durand A, Lupo D, et al. The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel. Proc Natl Acad Sci USA 2007 ; 104 : 1213–1218. [CrossRef] [Google Scholar]
  34. Radchenko M V, Thornton J, Merrick M. P(II) signal transduction proteins are ATPases whose activity is regulated by 2-oxoglutarate. Proc Natl Acad Sci USA 2013 ; 110 : 12948–12953. [CrossRef] [Google Scholar]
  35. Monahan BJ, Unkles SE, Tsing IT, et al. Mutation and functional analysis of the Aspergillus nidulans ammonium permease MeaA and evidence for interaction with itself and MepA. Fungal Genet Biol 2002 ; 36 : 35–46. [CrossRef] [PubMed] [Google Scholar]
  36. Ludewig U, Wilken S, Wu B, et al. Homo- and hetero-oligomerization of ammonium transporter-1 NH4 uniporters. J Biol Chem 2003 ; 278 : 45603–45610. [CrossRef] [PubMed] [Google Scholar]
  37. Loqué D, Lalonde S, Looger LL, et al. A cytosolic trans-activation domain essential for ammonium uptake. Nature 2007 ; 446 : 195–198. [CrossRef] [PubMed] [Google Scholar]
  38. Neuhäuser B, Dynowski M, Mayer M, et al. Regulation of NH4+ transport by essential cross talk between AMT monomers through the carboxyl tails. Plant Physiol 2007 ; 143 : 1651–1659. [CrossRef] [PubMed] [Google Scholar]
  39. Boeckstaens M, Llinares E, Van Vooren P, et al. The TORC1 effector kinase Npr1 fine tunes the inherent activity of the Mep2 ammonium transport protein. Nat Commun 2014 ; 5 : 3101. [CrossRef] [PubMed] [Google Scholar]
  40. Boeckstaens M, Merhi A, Llinares E, et al. Identification of a novel regulatory mechanism of nutrient transport controlled by TORC1-Npr1-Amu1/Par32. PLoS Genet 2015 ; 11 : e1005382. [CrossRef] [PubMed] [Google Scholar]
  41. Merhi A, De Mees C, Abdo R, et al. Wnt/β-catenin signaling regulates the expression of the ammonium permease gene RHBG in human cancer cells. PLoS One 2015 ; 10 : e0128683. [CrossRef] [PubMed] [Google Scholar]
  42. Bruce LJ, Beckmann R, Ribeiro ML, et al. A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood 2003 ; 101 : 4180–4188. [CrossRef] [PubMed] [Google Scholar]
  43. Genetet S, Ripoche P, Le Van Kim C, et al. Evidence of a structural and functional ammonium transporter RhBG·anion exchanger 1·ankyrin-G complex in kidney epithelial cells. J Biol Chem 2015 ; 290 : 6925–6936. [CrossRef] [PubMed] [Google Scholar]
  44. Cartron JP. Protéines de la famille Rh et transport membranaire du gaz NH3. Med Sci (Paris) 2005 ; 21 : 344–346. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Filteau M, Hamel V, Landry CR. La levure à vin, modèle d’étude des gènes et des maladies humaines dans un contexte personnalisé. Med Sci (Paris) 2016 ; 32 : 332–334. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.