Free Access
Med Sci (Paris)
Volume 32, Number 4, Avril 2016
Page(s) 387 - 393
Section M/S Revues
Published online 02 May 2016
  1. Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells. Nat Rev Immunol 2015 ; 15 : 295–307. [CrossRef] [PubMed] [Google Scholar]
  2. Schmitt E, Germann T, Goedert S, et al. IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 1994 ; 153 : 3989–3996. [PubMed] [Google Scholar]
  3. Bassil R, Orent W, Olah M, et al. BCL6 controls Th9 cell development by repressing Il9 transcription. J Immunol 2014 ; 193 : 198–207. [CrossRef] [PubMed] [Google Scholar]
  4. Brustle A, Heink S, Huber M, et al. The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 2007 ; 8 : 958–966. [CrossRef] [PubMed] [Google Scholar]
  5. Jabeen R, Goswami R, Awe O, et al. Th9 cell development requires a BATF-regulated transcriptional network. J Clin Invest 2013 ; 123 : 4641–4653. [CrossRef] [PubMed] [Google Scholar]
  6. Staudt V, Bothur E, Klein M, et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 2010 ; 33 : 192–202. [CrossRef] [PubMed] [Google Scholar]
  7. Chang HC, Sehra S, Goswami R, et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 2010 ; 11 : 527–534. [CrossRef] [PubMed] [Google Scholar]
  8. Goswami R, Kaplan MH. Gcn5 is required for PU.1-dependent IL-9 induction in Th9 cells. J Immunol 2012 ; 189 : 3026–3033. [CrossRef] [PubMed] [Google Scholar]
  9. Yang XO, Zhang H, Kim BS, et al. The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation. Nat Immunol 2013 ; 14 : 732–740. [CrossRef] [PubMed] [Google Scholar]
  10. Veldhoen M, Uyttenhove C, van Snick J, et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 2008 ; 9 : 1341–1346. [CrossRef] [PubMed] [Google Scholar]
  11. Dardalhon V, Awasthi A, Kwon H, et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and together with TGF-beta, generates IL-9+ IL-10+ Foxp3- effector T cells. Nat Immunol 2008 ; 9 : 1347–1355. [CrossRef] [PubMed] [Google Scholar]
  12. Tamiya T, Ichiyama K, Kotani H, et al. Smad2/3 and IRF4 play a cooperative role in IL-9-producing T cell induction. J Immunol 2013 ; 191 : 2360–2371. [CrossRef] [PubMed] [Google Scholar]
  13. Wang W, Wang X, Chun J, et al. Inflammasome-independent NLRP3 augments TGF-beta signaling in kidney epithelium. J Immunol 2013 ; 190 : 1239–1249. [CrossRef] [PubMed] [Google Scholar]
  14. Kim IK, Kim BS, Koh CH, et al. Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells. Nat Med 2015 ; 21 : 1010–1017. [CrossRef] [PubMed] [Google Scholar]
  15. Park J, Li H, Zhang M, et al. Murine Th9 cells promote the survival of myeloid dendritic cells in cancer immunotherapy. Cancer Immunol Immunother 2014 ; 63 : 835–845. [CrossRef] [PubMed] [Google Scholar]
  16. Jager A, Dardalhon V, Sobel RA, et al. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 2009 ; 183 : 7169–7177. [CrossRef] [PubMed] [Google Scholar]
  17. Vegran F, Berger H, Boidot R, et al. The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nat Immunol 2014 ; 15 : 758–766. [CrossRef] [PubMed] [Google Scholar]
  18. Wong MT, Ye JJ, Alonso MN, et al. Regulation of human Th9 differentiation by type I interferons and IL-21. Immunol Cell Biol 2010 ; 88 : 624–631. [CrossRef] [PubMed] [Google Scholar]
  19. Ma L, Xue HB, Guan XH, et al. Possible pathogenic role of T helper type 9 cells and interleukin (IL)-9 in atopic dermatitis. Clin Exp Immunol 2014 ; 175 : 25–31. [CrossRef] [PubMed] [Google Scholar]
  20. Longphre M, Li D, Gallup M, et al. Allergen-induced IL-9 directly stimulates mucin transcription in respiratory epithelial cells. J Clin Invest 1999 ; 104 : 1375–1382. [CrossRef] [PubMed] [Google Scholar]
  21. Forbes EE, Groschwitz K, Abonia JP, et al. IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J Exp Med 2008 ; 205 : 897–913. [CrossRef] [PubMed] [Google Scholar]
  22. Kearley J, Buckland KF, Mathie SA, Lloyd CM. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am J Respir Crit Care Med 2009 ; 179 : 772–781. [CrossRef] [PubMed] [Google Scholar]
  23. Borish L, Aarons A, Rumbyrt J, et al. Interleukin-10 regulation in normal subjects and patients with asthma. J Allergy Clin Immunol 1996 ; 97 : 1288–1296. [CrossRef] [PubMed] [Google Scholar]
  24. Gerlach K, Hwang Y, Nikolaev A, et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 2014 ; 15 : 676–686. [CrossRef] [PubMed] [Google Scholar]
  25. Singh TP, Schon MP, Wallbrecht K, et al. Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PLoS One 2013 ; 8 : e51752. [CrossRef] [PubMed] [Google Scholar]
  26. Zhou Y, Sonobe Y, Akahori T, et al. IL-9 promotes Th17 cell migration into the central nervous system via CC chemokine ligand-20 produced by astrocytes. J Immunol 2011 ; 186 : 4415–4421. [CrossRef] [PubMed] [Google Scholar]
  27. Kara EE, Comerford I, Bastow CR, et al. Distinct chemokine receptor axes regulate Th9 cell trafficking to allergic and autoimmune inflammatory sites. J Immunol 2013 ; 191 : 1110–1117. [CrossRef] [PubMed] [Google Scholar]
  28. Anuradha R, George PJ, Hanna LE, et al. IL-4-, TGF-beta-, and IL-1-dependent expansion of parasite antigen-specific Th9 cells is associated with clinical pathology in human lymphatic filariasis. J Immunol 2013 ; 191 : 2466–2473. [CrossRef] [PubMed] [Google Scholar]
  29. Faulkner H, Humphreys N, Renauld JC, et al. Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur J Immunol 1997 ; 27 : 2536–2540. [CrossRef] [PubMed] [Google Scholar]
  30. Faulkner H, Renauld JC, Van Snick J, Grencis RK. Interleukin-9 enhances resistance to the intestinal nematode Trichuris muris. Infect Immun 1998 ; 66 : 3832–3840. [PubMed] [Google Scholar]
  31. Licona-Limon P, Henao-Mejia J, Temann AU, et al. Th9 cells drive host immunity against gastrointestinal worm infection. Immunity 2013 ; 39 : 744–757. [CrossRef] [PubMed] [Google Scholar]
  32. Purwar R, Schlapbach C, Xiao S, et al. Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 2012 ; 18 : 1248–1253. [CrossRef] [PubMed] [Google Scholar]
  33. Lu Y, Hong S, Li H, et al. Th9 cells promote antitumor immune responses in vivo. J Clin Investig 2012 ; 122 : 4160–4171. [CrossRef] [Google Scholar]
  34. Kruger-Krasagakes S, Krasagakis K, Garbe C, et al. Expression of interleukin 10 in human melanoma. Br J Cancer 1994 ; 70 : 1182–1185. [CrossRef] [PubMed] [Google Scholar]
  35. Howell WM, Turner SJ, Bateman AC, Theaker JM. IL-10 promoter polymorphisms influence tumour development in cutaneous malignant melanoma. Genes Immun 2001 ; 2 : 25–31. [CrossRef] [PubMed] [Google Scholar]
  36. Liu JQ, Li XY, Yu HQ, et al. Tumor-specific Th2 responses inhibit growth of CT26 colon-cancer cells in mice via converting intratumor regulatory T cells to Th9 cells. Sci Rep 2015 ; 5 : 10665. [CrossRef] [PubMed] [Google Scholar]
  37. Noelle RJ, Nowak EC. Cellular sources and immune functions of interleukin-9. Nat Rev Immunol 2010 ; 10 : 683–687. [CrossRef] [PubMed] [Google Scholar]
  38. Lu Y, Hong B, Li H, et al. Tumor-specific IL-9-producing CD8+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers. Proc Natl Acad Sci USA 2014 ; 111 : 2265–2270. [CrossRef] [Google Scholar]
  39. Fang Y, Chen X, Bai Q, et al. IL-9 inhibits HTB-72 melanoma cell growth through upregulation of p21 and TRAIL. J Surg Oncol 2015 ; 111 : 969–974. [CrossRef] [PubMed] [Google Scholar]
  40. Lemoli RM, Fortuna A, Tafuri A, et al. Interleukin-9 in human myeloid leukemia cells. Leuk Lymphoma 1997 ; 26 : 563–573. [CrossRef] [PubMed] [Google Scholar]
  41. Hoelzinger DB, Dominguez AL, Cohen PA, Gendler SJ. Inhibition of adaptive immunity by IL9 can be disrupted to achieve rapid T-cell sensitization and rejection of progressive tumor challenges. Cancer Res 2014 ; 74 : 6845–6855. [CrossRef] [Google Scholar]
  42. Davis MR, Zhu Z, Hansen DM, et al. The role of IL-21 in immunity and cancer. Cancer letters 2015 ; 358 : 107–114. [CrossRef] [PubMed] [Google Scholar]
  43. Croce M, Rigo V, Ferrini S. IL-21: a pleiotropic cytokine with potential applications in oncology. J Immunol Res 2015 ; 2015 : 696578. [CrossRef] [PubMed] [Google Scholar]
  44. Julia V, Staumont-Salle D, Dombrowicz D. Rôle de la fractalkine/CX3CL1 et de son récepteur CX3CR1 dans les pathologies allergiques. Med Sci (Paris) 2016 ; 32 : 260–266. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Teillaud JL. Quand les anticorps rencontrent l’immunité antitumorale : fin de partie pour la cellule cancéreuse ? Med Sci (Paris) 2015 ; 31 : 707–708. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Teillaud JL. L’homme qui a fait sauter le verrou de la réponse immune adaptative anti-tumorale. Med Sci (Paris) 2016 ; 32 : 121–122. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.