Free Access
Med Sci (Paris)
Volume 32, Number 4, Avril 2016
Page(s) 370 - 377
Section M/S Revues
Published online 02 May 2016
  1. Treps L, Julie Gavard J. L’angiogenèse tumorale : quand l’arbre de vie tourne mal. Med Sci (Paris) 2015 ; 31 : 989–995. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Dudley AC. Tumor endothelial cells. Cold Spring Harb perspect Med 2012 ; 2 : a006536. [CrossRef] [PubMed] [Google Scholar]
  3. Blay JY. Le futur des thérapeutiques ciblées en oncologie : trouver les cibles, traiter tôt et au long court. Med Sci (Paris) 2007 ; 12 : 1073–1074. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Rosenfeld PJ, Schwatz SD, Blumenkranz MS, et al. Maximum tolerated dose of e humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology 2005 ; 112 : 1048–1053. [CrossRef] [PubMed] [Google Scholar]
  5. Ahmadizar F, Onland-Moret NC, de Boer A, et al. Efficacy and safety assessment of the addition of bevacizumab to adjuvant therapy agents in cancer patients: A systematic review and meta-analysis of randomized controlled trials. PLoS One 2015 ; 10 : e0136324. [CrossRef] [PubMed] [Google Scholar]
  6. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004 ; 350 : 2335–2342. [CrossRef] [PubMed] [Google Scholar]
  7. Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 2005 ; 65 : 671–680. [Google Scholar]
  8. Romero M, Brière J, de Bazelaire C, et al. Aflibercept-mediated early angiogenic changes in aggressive B-cell lymphoma. Cancer Chemother Pharmacol 2011 ; 68 : 1135–1143. [CrossRef] [PubMed] [Google Scholar]
  9. Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin 2010 ; 60 : 222–243. [CrossRef] [PubMed] [Google Scholar]
  10. Wang W, Jia WD, Xu GL, et al. Antitumoral activity of rapamycin mediated through inhibition of HIF-1alpha and VEGF in hepatocellular carcinoma. Dig Dis Sci 2009 ; 54 : 2128–2136. [CrossRef] [PubMed] [Google Scholar]
  11. Kauffman HM, Cherikh WS, Cheng Y, et al. Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation 2005 ; 80 : 883–889. [CrossRef] [PubMed] [Google Scholar]
  12. Murakami M, Simons M. Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol 2008 ; 15 : 215–220. [CrossRef] [PubMed] [Google Scholar]
  13. Onimaru M, Yonemitsu Y, Tanii M, et al. Fibroblast growth factor-2 gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs. Circ Res 2002 ; 91 : 923–930. [CrossRef] [PubMed] [Google Scholar]
  14. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005 ; 8 : 299–309. [CrossRef] [PubMed] [Google Scholar]
  15. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008 ; 8 : 592–603. [CrossRef] [PubMed] [Google Scholar]
  16. Ebos JM1, Lee CR, Christensen JG, et al. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci USA 2007 ; 104 : 17069–17074. [CrossRef] [Google Scholar]
  17. Nissen LJL, Cao R, Hedlund EM, et al. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 2007 ; 117 : 2766–2777. [CrossRef] [PubMed] [Google Scholar]
  18. Galaup A, Germain S. Les anticorps anti-PLGF : un nouvel outil thérapeutique anti-angiogénique ? Med Sci (Paris) 2008 ; 24 : 459–462. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Hirota K, Semenza GL. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 2006 ; 59 : 15–26. [CrossRef] [PubMed] [Google Scholar]
  20. Rapisarda A, Melillo G. Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug Resist Updat 2009 ; 12 : 74–80. [CrossRef] [PubMed] [Google Scholar]
  21. Wang W, Li Q, Yamada T, et al. Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res 2009 ; 15 : 6630–6638. [CrossRef] [PubMed] [Google Scholar]
  22. Ide T, Kitajima Y, Miyoshi A, et al. Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. Int J Cancer 2006 ; 119 : 2750–2759. [CrossRef] [PubMed] [Google Scholar]
  23. Varna M, Gapihan G, Feugeas JP, et al. Stem cells increase in numbers in perinecrotic areas in human renal cancer. Clin Cancer Res 2015 ; 21 : 916–924. [CrossRef] [PubMed] [Google Scholar]
  24. Bousquet G, Varna M, Ferreira I, et al. Differential regulation of sunitinib targets predicts its tumor-type-specific effect on endothelial and/or tumor cell apoptosis. Cancer Chemother Pharmacol 2013 ; 72 : 1183–1193. [CrossRef] [PubMed] [Google Scholar]
  25. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009 ; 9 : 239–252. [CrossRef] [PubMed] [Google Scholar]
  26. Knievel J, Schulz WA, Greife A, et al. Multiple mechanisms mediate resistance to sorafenib in urothelial cancer. Int J Mol Sci 2014 ; 15 : 20500–20517. [CrossRef] [PubMed] [Google Scholar]
  27. Moccia F, Lodola F, Dragoni S, et al. Ca2+ signalling in endothelial progenitor cells: a novel means to improve cell-based therapy and impair tumour vascularisation. Curr Vasc Pharmacol 2014 ; 12 : 87–105. [CrossRef] [PubMed] [Google Scholar]
  28. De Groot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 2012 ; 3 : 1036–1048. [CrossRef] [PubMed] [Google Scholar]
  29. Sennino B, Ishiguro-Oonuma T, Wei Y, et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov 2012 ; 2 : 270–287. [CrossRef] [PubMed] [Google Scholar]
  30. Grepin R, Guyot M, Jacquin M, Durivault, et al. Acceleration of clear cell renal cell carcinoma growth in mice following bevacizumab/avastin treatment: the role of CXCL cytokines. Oncogene 2012 ; 31 : 1683–1694. [CrossRef] [PubMed] [Google Scholar]
  31. Giuliano S, Pages G. Mechanisms of resistance to anti-angiogenesis therapies. Biochimie 2013 ; 95 : 1110–1119. [CrossRef] [PubMed] [Google Scholar]
  32. Hu YL1, Jahangiri A, De Lay M, Aghi MK. Hypoxia-induced tumor cell autophagy mediates resistance to anti-angiogenic therapy. Autophagy 2012 ; 8 : 979–981. [CrossRef] [PubMed] [Google Scholar]
  33. Gotink KJ1, Broxterman HJ, Labots M, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res 2011 ; 17 : 7337–7346. [CrossRef] [PubMed] [Google Scholar]
  34. Kim HK, Song KS, Chung JH, Lee KR, et al. Platelet microparticles induce angiogenesis in vitro. Br J Haematol 2004 ; 124 : 376–384. [CrossRef] [PubMed] [Google Scholar]
  35. Rafii A, Mirshahi P, Poupot M, et al. Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours. PLoS One 2008 ; 3 : e3894. [CrossRef] [PubMed] [Google Scholar]
  36. Dong Y, Pan Q, Jiang L, et al. Tumor endothelial expression of P-glycoprotein upon microvesicular transfer of TrpC5 derived from adriamycin-resistant breast cancer cells. Biochem Biophys Res Commun 2014 ; 446 : 85–90. [CrossRef] [PubMed] [Google Scholar]
  37. Giuliano S, Cormerais Y, Dufies M, et al. Resistance to sunitinib in renal clear cell carcinoma results from sequestration in lysosomes and inhibition of the autophagic flux. Autophagy 2015 ; 11 : 1891–1904. [CrossRef] [PubMed] [Google Scholar]
  38. Huang L, Perrault C, Coelho-Martins J, et al. Induction of acquired drug resistance in endothelial cells and its involvement in anticancer therapy. J Hematol Oncol 2013 ; 6 : 49. [CrossRef] [PubMed] [Google Scholar]
  39. Huang L, Hu C, Di Benedetto M, et al. Cross-drug resistance to sunitinib induced by doxorubicin in endothelial cells. Oncol Lett 2015 ; 9 : 1287–1292. [CrossRef] [PubMed] [Google Scholar]
  40. Huang L Huang L, Hu C, et al. Induction of multiple drug resistance in HMEC-1 endothelial cells after long-term exposure to sunitinib. Onco Targets Ther 2014 ; 7 : 2249–2255. [Google Scholar]
  41. Hida K, Akiyama K, Ohga N, et al. Tumour endothelial cells acquire drug resistance in a tumour microenvironment. J Biochem 2013 ; 153 : 243–249. [CrossRef] [PubMed] [Google Scholar]
  42. Cheng L, Huang Z, Zhou W, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 2013 ; 153 : 139–152. [CrossRef] [PubMed] [Google Scholar]
  43. Streubel B, Chott A, Huber D, et al. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 2004 ; 351 : 250–259. [CrossRef] [PubMed] [Google Scholar]
  44. Schneider BP, Wang M, Radovich M. et al. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol, 2008 ; 26 : 4672–4678. Erratum. In: J Clin Oncol 2009 ; 27 : 3070. [CrossRef] [PubMed] [Google Scholar]
  45. Bousquet G, El Bouchtaoui M, Leboeuf C, et al. Tracking sub-clonal TP53 mutated tumor cells in human metastatic renal cell carcinoma. Oncotarget 2015 ; 6 : 19279–19289. [CrossRef] [PubMed] [Google Scholar]
  46. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015 ; 14 : 561–584. [CrossRef] [PubMed] [Google Scholar]
  47. Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 2015 ; 125 : 3384–3391. [CrossRef] [PubMed] [Google Scholar]
  48. Ozao-Choy J, Ma G, Kao J, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 2009 ; 69 : 2514–2522. [CrossRef] [PubMed] [Google Scholar]
  49. Varna M, Bousquet G, Ferreira I, et al. Stability of preclinical models of aggressive renal cell carcinomas. Int J Clin Exp Pathol 2014 ; 7 : 2950–2962. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.