Free Access
Med Sci (Paris)
Volume 32, Number 4, Avril 2016
Page(s) 362 - 369
Section M/S Revues
Published online 02 May 2016
  1. Pressman D, Korngold L. The in vivo localization of anti-Wagner osteogenic sarcoma antibodies. Cancer 1953 ; 6 : 619–623. [CrossRef] [PubMed] [Google Scholar]
  2. Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol 2007 ; 34 : 757–778. [CrossRef] [PubMed] [Google Scholar]
  3. Kaminski MS, Tuck M, Estes J, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 2005 ; 352 : 441–449. [CrossRef] [PubMed] [Google Scholar]
  4. Kaminski MS, Zasadny KR, Francis IR, et al. Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med 1993 ; 329 : 459–465. [CrossRef] [PubMed] [Google Scholar]
  5. Press OW, Eary JF, Appelbaum FR, et al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 1993 ; 329 : 1219–1224. [CrossRef] [PubMed] [Google Scholar]
  6. Tomblyn M. Radioimmunotherapy for B-cell non-hodgkin lymphomas. Cancer Control 2012 ; 19 : 196–203. [CrossRef] [PubMed] [Google Scholar]
  7. Tomblyn MB, Katin MJ, Wallner PE. The new golden era for radioimmunotherapy: not just for lymphomas anymore. Cancer Control 2013 ; 20 : 60–71. [CrossRef] [PubMed] [Google Scholar]
  8. Ketterer N, Delaloye AB, Helg C, et al. Radio-immunothérapie du lymphome folliculaire: un pas vers la guérison ? Bull Cancer 2007 ; 94 : 799–806. [PubMed] [Google Scholar]
  9. Pagel JM, Gooley TA, Rajendran J, et al. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood 2009 ; 114 : 5444–5453. [CrossRef] [PubMed] [Google Scholar]
  10. Rose AC, Shenoy PJ, Garrett G, et al. A systematic literature review and meta-analysis of radioimmunotherapy consolidation for patients with untreated follicular lymphoma. Clin Lymphoma Myeloma Leuk 2012 ; 12 : 393–399. [CrossRef] [PubMed] [Google Scholar]
  11. Lindén O, Hindorf C, Cavallin-Ståhl E, et al. Dose-fractionated radioimmunotherapy in non-Hodgkin’s lymphoma using DOTA-conjugated, 90Y-radiolabeled, humanized anti-CD22 monoclonal antibody, epratuzumab. Clin Cancer Res 2005 ; 11 : 5215–5222. [CrossRef] [PubMed] [Google Scholar]
  12. Kramer K, Humm JL, Souweidane MM, et al. Phase I study of targeted radioimmunotherapy for leptomeningeal cancers using intra-Ommaya 131-I-3F8. J Clin Oncol 2007 ; 25 : 5465–5470. [CrossRef] [PubMed] [Google Scholar]
  13. Gulenchyn KY, Yao X, Asa SL, et al. Radionuclide therapy in neuroendocrine tumours: a systematic review. Clin Oncol (R Coll Radiol) 2012 ; 24 : 294–308. [CrossRef] [PubMed] [Google Scholar]
  14. Tagawa ST, Milowsky MI, Morris M, et al. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res 2013 ; 19 : 5182–5191. [CrossRef] [PubMed] [Google Scholar]
  15. Sgouros G, Roeske JC, McDevitt MR, et al. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J Nucl Med 2010 ; 51 : 311–328. [CrossRef] [PubMed] [Google Scholar]
  16. Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013 ; 369 : 213–223. [CrossRef] [PubMed] [Google Scholar]
  17. Santoro L, Boutaleb S, Garambois V, et al. Noninternalizing monoclonal antibodies are suitable candidates for 125I radioimmunotherapy of small-volume peritoneal carcinomatosis. J Nucl Med 2009 ; 50 : 2033–2041. [CrossRef] [PubMed] [Google Scholar]
  18. Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med 2005 ; 46 : (suppl 1) : S4S–12S. [Google Scholar]
  19. Kitson SL, Cuccurullo V, Moody TS, et al. Radionuclide antibody-conjugates, a targeted therapy towards cancer. Curr Radiopharm 2013 ; 6 : 57–71. [CrossRef] [PubMed] [Google Scholar]
  20. Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted {alpha}-particle therapy. J Nucl Med 2005 ; 46 (suppl 1) : S199–S204. [Google Scholar]
  21. Brechbiel MW. Targeted alpha-therapy: past, present, future ? Dalton Trans 2007 ; 43 : 4918–4928. [CrossRef] [PubMed] [Google Scholar]
  22. Morgenstern A, Bruchertseifer F, Apostolidis C. Bismuth-213 and actinium-225 - generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes. Curr Radiopharm 2012 ; 5 : 221–227. [Google Scholar]
  23. Huclier-Markai S, Alliot C, Varmenot N. Alpha-emitters for immuno-therapy: a review of recent developments from chemistry to clinics. Curr Top Med Chem 2012 ; 12 : 2642–2654. [CrossRef] [PubMed] [Google Scholar]
  24. Pouget J-P, Navarro-Teulon I, Bardiès M, et al. Clinical radioimmunotherapy–the role of radiobiology. Nat Rev Clin Oncol 2011 ; 8 : 720–734. [CrossRef] [Google Scholar]
  25. Jurcic JG, Larson SM, Sgouros G, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood 2002 ; 100 : 1233–1239. [PubMed] [Google Scholar]
  26. Baidoo KE, Yong K, Brechbiel MW. Molecular pathways: targeted α-particle radiation therapy. Clin Cancer Res 2013 ; 19 : 530–537. [CrossRef] [PubMed] [Google Scholar]
  27. Zalutsky MR, Reardon DA, Akabani G, et al. Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 2008 ; 49 : 30–38. [CrossRef] [PubMed] [Google Scholar]
  28. Rosenblat TL, McDevitt MR, Mulford DA, et al. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin Cancer Res 2010 ; 16 : 5303–5311. [CrossRef] [PubMed] [Google Scholar]
  29. Raja C, Graham P, Abbas Rizvi SM, et al. Interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol Ther 2007 ; 6 : 846–852. [CrossRef] [PubMed] [Google Scholar]
  30. Allen BJ, Singla AA, Rizvi SMA, et al. Analysis of patient survival in a Phase I trial of systemic targeted α-therapy for metastatic melanoma. Immunotherapy 2011 ; 3 : 1041–1050. [CrossRef] [PubMed] [Google Scholar]
  31. Andersson H, Cederkrantz E, Bäck T, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2 - a phase I study. J Nucl Med 2009 ; 50 : 1153–1160. [CrossRef] [PubMed] [Google Scholar]
  32. Cordier D, Forrer F, Bruchertseifer F, et al. Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8, Met(O2)11]-substance P: a pilot trial. Eur J Nucl Med Mol Imaging 2010 ; 37 : 1335–1344. [CrossRef] [PubMed] [Google Scholar]
  33. Kneifel S, Cordier D, Good S, et al. Local targeting of malignant gliomas by the diffusible peptidic vector 1, 4, 7, 10-tetraazacyclododecane-1-glutaric acid-4, 7, 10-triacetic acid-substance p. Clin Cancer Res 2006 ; 12 : 3843–3850. [CrossRef] [PubMed] [Google Scholar]
  34. Bernier J, Hall EJ, Giaccia A.. Timeline. Radiation oncology: a century of achievements. Nat Rev Cancer 2004 ; 4 : 737–747. [CrossRef] [PubMed] [Google Scholar]
  35. Vacchelli E, Vitale I, Tartour E, , et al. Trial watch: anticancer radioimmunotherapy. Oncoimmunology 2013 ; 2 : e25595. [CrossRef] [PubMed] [Google Scholar]
  36. Demaria S, Ng B, Devitt ML, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 2004 ; 58 : 862–870. [Google Scholar]
  37. Shiraishi K, Ishiwata Y, Nakagawa K, et al. Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1alpha. Clin Cancer Res 2008 ; 14 : 1159–1166. [CrossRef] [PubMed] [Google Scholar]
  38. Demaria S, Formenti SC. Role of T lymphocytes in tumor response to radiotherapy. Front Oncol 2012 ; 2 : 95. [PubMed] [Google Scholar]
  39. Keisari Y, Hochman I, Confino H, et al. Activation of local and systemic anti-tumor immune responses by ablation of solid tumors with intratumoral electrochemical or alpha radiation treatments. Cancer Immunol Immunother 2014 ; 63 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  40. Confino H, Hochman I, Efrati M, et al. Tumor ablation by intratumoral Ra-224-loaded wires induces anti-tumor immunity against experimental metastatic tumors. Cancer Immunol Immunother 2015 ; 64 : 191–199. [CrossRef] [PubMed] [Google Scholar]
  41. Gorin J-B, Menager J, Gouard S, et al. Antitumor immunity induced after α irradiation. Neoplasia 2014 ; 16 : 319–328. [CrossRef] [PubMed] [Google Scholar]
  42. Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007 ; 13 : 54–61. [CrossRef] [PubMed] [Google Scholar]
  43. Kroemer G, Galluzzi L, Kepp O, et al. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013 ; 31 : 51–72. [CrossRef] [PubMed] [Google Scholar]
  44. Chakraborty M, Abrams SI, Coleman CN, et al. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 2004 ; 64 : 4328–4337. [CrossRef] [Google Scholar]
  45. Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 2006 ; 203 : 1259–1271. [CrossRef] [PubMed] [Google Scholar]
  46. Garnett CT, Palena C, Chakraborty M, et al. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res 2004 ; 64 : 7985–7994. [CrossRef] [Google Scholar]
  47. Chakraborty M, Wansley EK, Carrasquillo JA, et al. The use of chelated radionuclide (samarium-153-ethylenediaminetetramethylenephosphonate) to modulate phenotype of tumor cells and enhance T cell-mediated killing. Clin Cancer Res 2008 ; 14 : 4241–4249. [CrossRef] [PubMed] [Google Scholar]
  48. Chakraborty M, Gelbard A, Carrasquillo JA, et al. Use of radiolabeled monoclonal antibody to enhance vaccine-mediated antitumor effects. Cancer Immunol Immunother 2008 ; 57 : 1173–1183. [CrossRef] [PubMed] [Google Scholar]
  49. Milas L, Hunter N, Withers HR. Combination of local irradiation with systemic application of anaerobic corynebacteria in therapy of a murine fibrosarcoma. Cancer Res 1975 ; 35 : 1274–1277. [Google Scholar]
  50. Demaria S, Bhardwaj N, McBride WH, et al. Combining radiotherapy and immunotherapy: A revived partnership. Int J Radiat Oncol Biol Phys 2005 ; 63 : 655–666. [CrossRef] [PubMed] [Google Scholar]
  51. Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 2013 ; 105 : 256–265. [CrossRef] [PubMed] [Google Scholar]
  52. Chérel M, Gouard S, Gaschet J, et al. 213Bi Radioimmunotherapy with an anti-mCD138 monoclonal antibody in a murine model of multiple myeloma. J Nucl Med 2013 ; 54 : 1597–1604. [CrossRef] [PubMed] [Google Scholar]
  53. Ménager J, Gorin JB, Maurel C, et al. Combining α-radioimmunotherapy, adoptive T cell therapy to potentiate tumor destruction. PLoS One 2015 ; 10 : e0130249. [CrossRef] [PubMed] [Google Scholar]
  54. Carpentier AF. Immunothérapie des cancers par oligonucléotides immunostimulants. Med Sci (Paris) 2005 ; 21 : 73–77. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.