Free Access
Med Sci (Paris)
Volume 32, Number 4, Avril 2016
Page(s) 353 - 361
Section M/S Revues
Published online 02 May 2016
  1. Krumbhaar EB, Krumbhaar HD. The blood and bone marrow in yelloe cross gas (mustard gas) poisoning. J Med Res 1919 ; 40 : 497–508. [PubMed] [Google Scholar]
  2. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res 2008 ; 68 : 8643–8653. [CrossRef] [Google Scholar]
  3. Zitvogel L, Apetoh L, Ghiringhelli F, et al. Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008 ; 8 : 59–73. [CrossRef] [PubMed] [Google Scholar]
  4. Suzuki E, Sun J, Kapoor V, et al. Gemcitabine has significant immunomodulatory activity in murine tumor models independent of its cytotoxic effects. Cancer Biol Ther 2007 ; 6 : 880–885. [CrossRef] [PubMed] [Google Scholar]
  5. Kroemer G, Galluzzi L, Kepp O, et al. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013 ; 31 : 51–72. [CrossRef] [PubMed] [Google Scholar]
  6. Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 2010 ; 28 : 105–113. [CrossRef] [PubMed] [Google Scholar]
  7. Fridman WH, Galon J, Pages F, et al. Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 2011 ; 71 : 5601–5605. [CrossRef] [Google Scholar]
  8. Ma Y, Mattarollo SR, Adjemian S, et al. CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapy. Cancer Res 2014 ; 74 : 436–445. [CrossRef] [Google Scholar]
  9. Rahir G, Wathelet N, Hanoteau A, et al. Cyclophosphamide treatment induces rejection of established P815 mastocytoma by enhancing CD4 priming and intratumoral infiltration of P1E/H-2K(d) -specific CD8(+) T cells. Int J Cancer 2014 ; 134 : 2841–2852. [CrossRef] [PubMed] [Google Scholar]
  10. Williams KM, Hakim FT, Gress RE. T cell immune reconstitution following lymphodepletion. Semin Immunol 2007 ; 19 : 318–330. [CrossRef] [PubMed] [Google Scholar]
  11. Jackaman C, Majewski D, Fox SA, et al. Chemotherapy broadens the range of tumor antigens seen by cytotoxic CD8+ T cells in vivo. Cancer Immunol Immunother 2012 ; 61 : 2343–2356. [CrossRef] [PubMed] [Google Scholar]
  12. Hong M, Puaux AL, Huang C, et al. Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res 2011 ; 71 : 6997–7009. [CrossRef] [Google Scholar]
  13. Van Pel A, Boon T. Protection against a nonimmunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc Natl Acad Sci USA 1982 ; 79 : 4718–4722. [CrossRef] [Google Scholar]
  14. Grulich AE, van Leeuwen MT, Falster MO, et al. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 2007 ; 370 : 59–67. [CrossRef] [PubMed] [Google Scholar]
  15. Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001 ; 410 : 1107–1111. [CrossRef] [PubMed] [Google Scholar]
  16. Koebel CM, Vermi W, Swann JB, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007 ; 450 : 903–907. [CrossRef] [PubMed] [Google Scholar]
  17. Coulie PG, Van den Eynde BJ, van der Bruggen P, et al. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014 ; 14 : 135–146. [CrossRef] [PubMed] [Google Scholar]
  18. Igney FH, Krammer PH. Tumor counterattack: fact or fiction ? Cancer Immunol Immunother 2005 ; 54 : 1127–1136. [CrossRef] [PubMed] [Google Scholar]
  19. Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol 2014 ; 27 : 1–7. [CrossRef] [PubMed] [Google Scholar]
  20. Awwad M, North RJ. Cyclophosphamide-induced immunologically mediated regression of a cyclophosphamide-resistant murine tumor: a consequence of eliminating precursor L3T4+ suppressor T-cells. Cancer Res 1989 ; 49 : 1649–1654. [Google Scholar]
  21. Lutsiak MEC, Semnani RT, de Pascalis R, et al. Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 2005 ; 105 : 2862–2868. [CrossRef] [PubMed] [Google Scholar]
  22. Walter S, Weinschenk T, Stenzl A, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 2012 ; 18 : 1254–1261. [CrossRef] [PubMed] [Google Scholar]
  23. Ghiringhelli F, Menard C, Puig PE, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 2007 ; 56 : 641–648. [CrossRef] [PubMed] [Google Scholar]
  24. Zhao J, Cao Y, Lei Z, et al. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res 2010 ; 70 : 4850–4858. [CrossRef] [Google Scholar]
  25. Kasprowicz DJ, Droin N, Soper DM, et al. Dynamic regulation of FoxP3 expression controls the balance between CD4+ T cell activation and cell death. Eur J Immunol 2005 ; 35 : 3424–3432. [CrossRef] [PubMed] [Google Scholar]
  26. Zhang L, Dermawan K, Jin M, et al. Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clin Immunol 2008 ; 129 : 219–229. [CrossRef] [PubMed] [Google Scholar]
  27. de Coaña Pico. Y, Choudhury A, Kiessling R. Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol Med 2015 ; 21 : 482–491. [CrossRef] [PubMed] [Google Scholar]
  28. Emens L a, Middleton G. The interplay of immunotherapy and chemotherapy: Harnessing potential synergies. Cancer Immunol Res 2015 ; 3 : 436–443. [CrossRef] [PubMed] [Google Scholar]
  29. Butterfield LH. Cancer vaccines. Br Med J 2015 ; 350 : h988. [CrossRef] [PubMed] [Google Scholar]
  30. Devaud C, John LB, Westwood JA, et al. Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy. Oncoimmunology 2013 ; 2 : e25961. [CrossRef] [PubMed] [Google Scholar]
  31. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010 ; 363 : 711–723. [CrossRef] [PubMed] [Google Scholar]
  32. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012 ; 366 : 2443–2454. [Google Scholar]
  33. Chmielewski M, Hombach A a., Abken H. Of CARs and TRUCKs: Chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev 2014 ; 257 : 83–90. [CrossRef] [PubMed] [Google Scholar]
  34. Mkrtichyan M, Najjar YG, Raulfs EC, et al. Anti-PD-1 synergizes with cyclophosphamide to induce potent anti-tumor vaccine effects through novel mechanisms. Eur J Immunol 2011 ; 41 : 2977–2986. [CrossRef] [PubMed] [Google Scholar]
  35. Moschella F, Proietti E, Capone I, et al. Combination strategies for enhancing the efficacy of immunotherapy in cancer patients. Ann NY Acad Sci 2010 ; 1194 : 169–178. [CrossRef] [Google Scholar]
  36. Pastore A, Jurinovic V, Kridel R, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol 2015 ; 16 : 1111–1122. [CrossRef] [PubMed] [Google Scholar]
  37. Tesniere A, Schlemmer F, Boige V, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010 ; 29 : 482–491. [CrossRef] [PubMed] [Google Scholar]
  38. Vacchelli E, Martins I, Eggermont A, et al. Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2012 ; 1 : 1557–1576. [CrossRef] [PubMed] [Google Scholar]
  39. Suzuki E, Kapoor V, Jassar AS, et al. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 2005 ; 11 : 6713–6721. [CrossRef] [PubMed] [Google Scholar]
  40. Trojandt S, Knies D, Pektor S, et al. The chemotherapeutic agent topotecan differentially modulates the phenotype and function of dendritic cells. Cancer Immunol Immunother 2013 ; 62 : 1315–1326. [CrossRef] [PubMed] [Google Scholar]
  41. Li JY, Duan XF, Wang LP, et al. Selective depletion of regulatory T cell subsets by docetaxel treatment in patients with nonsmall cell lung cancer. J Immunol Res 2014 ; 2014 : 286170. [PubMed] [Google Scholar]
  42. Tanaka H, Matsushima H, Nishibu A, et al. Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation. Cancer Res 2009 ; 69 : 6987–6994. [CrossRef] [Google Scholar]
  43. Mattarollo SR, Loi S, Duret H, et al. Pivotal Role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res 2011 ; 71 : 4809–4820. [CrossRef] [Google Scholar]
  44. Cao C, Han Y, Ren Y, et al. Mitoxantrone-mediated apoptotic B16–F1 cells induce specific anti-tumor immune response. Cell Mol Immunol 2009 ; 6 : 469–475. [CrossRef] [PubMed] [Google Scholar]
  45. Van den Eynde B, Lethé B, Van Pel A, et al. The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med 1991 ; 173 : 1373–1384. [CrossRef] [PubMed] [Google Scholar]
  46. Amar-Costesec A, Godelaine D, Van den Eynde B, et al. Identification and characterization of the tumor-specific P1A gene product. Biol cell 1994 ; 81 : 195–203. [CrossRef] [PubMed] [Google Scholar]
  47. Chen YT, Scanlan MJ, Sahin U, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 1997 ; 94 : 1914–1918. [CrossRef] [Google Scholar]
  48. Wölfel T, Hauer M, Schneider J, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995 ; 269 : 1281–1284. [CrossRef] [PubMed] [Google Scholar]
  49. Peiper M, Goedegebuure PS, Linehan DC, et al. The HER2/neu-derived peptide p654–662 is a tumor-associated antigen in human pancreatic cancer recognized by cytotoxic T lymphocytes. Eur J Immunol 1997 ; 27 : 1115–1123. [CrossRef] [PubMed] [Google Scholar]
  50. Keskin DB, Reinhold B, Lee SY, et al. Direct identification of an HPV-16 tumor antigen from cervical cancer biopsy specimens. Front Immunol 2011 ; 2 : 75. [PubMed] [Google Scholar]
  51. Bloom MB, Perry-Lalley D, Robbins PF, et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 1997 ; 185 : 453–459. [CrossRef] [PubMed] [Google Scholar]
  52. Teillaud JL. Microenvironnements tumoraux : conflictuels et complémentaires. Med Sci (Paris) 2014 ; 30 : 343–466. [Google Scholar]
  53. Teillaud JL. Quand les anticorps rencontrent l’immunité antitumorale : fin de partie pour la cellule cancéreuse ? Med Sci (Paris) 2015 ; 31 : 707–708. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Teillaud JL, Watier H, Beck A. Anticorps monoclonaux en thérapeutique. Med Sci (Paris) 2009 ; 25 : 995–1196. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.