Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 4, Avril 2016
Page(s) 353 - 361
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163204013
Publié en ligne 2 mai 2016
  1. Krumbhaar EB, Krumbhaar HD. The blood and bone marrow in yelloe cross gas (mustard gas) poisoning. J Med Res 1919 ; 40 : 497–508. [PubMed] [Google Scholar]
  2. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res 2008 ; 68 : 8643–8653. [CrossRef] [Google Scholar]
  3. Zitvogel L, Apetoh L, Ghiringhelli F, et al. Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008 ; 8 : 59–73. [CrossRef] [PubMed] [Google Scholar]
  4. Suzuki E, Sun J, Kapoor V, et al. Gemcitabine has significant immunomodulatory activity in murine tumor models independent of its cytotoxic effects. Cancer Biol Ther 2007 ; 6 : 880–885. [CrossRef] [PubMed] [Google Scholar]
  5. Kroemer G, Galluzzi L, Kepp O, et al. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013 ; 31 : 51–72. [CrossRef] [PubMed] [Google Scholar]
  6. Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 2010 ; 28 : 105–113. [CrossRef] [PubMed] [Google Scholar]
  7. Fridman WH, Galon J, Pages F, et al. Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 2011 ; 71 : 5601–5605. [CrossRef] [Google Scholar]
  8. Ma Y, Mattarollo SR, Adjemian S, et al. CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapy. Cancer Res 2014 ; 74 : 436–445. [CrossRef] [Google Scholar]
  9. Rahir G, Wathelet N, Hanoteau A, et al. Cyclophosphamide treatment induces rejection of established P815 mastocytoma by enhancing CD4 priming and intratumoral infiltration of P1E/H-2K(d) -specific CD8(+) T cells. Int J Cancer 2014 ; 134 : 2841–2852. [CrossRef] [PubMed] [Google Scholar]
  10. Williams KM, Hakim FT, Gress RE. T cell immune reconstitution following lymphodepletion. Semin Immunol 2007 ; 19 : 318–330. [CrossRef] [PubMed] [Google Scholar]
  11. Jackaman C, Majewski D, Fox SA, et al. Chemotherapy broadens the range of tumor antigens seen by cytotoxic CD8+ T cells in vivo. Cancer Immunol Immunother 2012 ; 61 : 2343–2356. [CrossRef] [PubMed] [Google Scholar]
  12. Hong M, Puaux AL, Huang C, et al. Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res 2011 ; 71 : 6997–7009. [CrossRef] [Google Scholar]
  13. Van Pel A, Boon T. Protection against a nonimmunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc Natl Acad Sci USA 1982 ; 79 : 4718–4722. [CrossRef] [Google Scholar]
  14. Grulich AE, van Leeuwen MT, Falster MO, et al. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 2007 ; 370 : 59–67. [CrossRef] [PubMed] [Google Scholar]
  15. Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001 ; 410 : 1107–1111. [CrossRef] [PubMed] [Google Scholar]
  16. Koebel CM, Vermi W, Swann JB, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007 ; 450 : 903–907. [CrossRef] [PubMed] [Google Scholar]
  17. Coulie PG, Van den Eynde BJ, van der Bruggen P, et al. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014 ; 14 : 135–146. [CrossRef] [PubMed] [Google Scholar]
  18. Igney FH, Krammer PH. Tumor counterattack: fact or fiction ? Cancer Immunol Immunother 2005 ; 54 : 1127–1136. [CrossRef] [PubMed] [Google Scholar]
  19. Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol 2014 ; 27 : 1–7. [CrossRef] [PubMed] [Google Scholar]
  20. Awwad M, North RJ. Cyclophosphamide-induced immunologically mediated regression of a cyclophosphamide-resistant murine tumor: a consequence of eliminating precursor L3T4+ suppressor T-cells. Cancer Res 1989 ; 49 : 1649–1654. [Google Scholar]
  21. Lutsiak MEC, Semnani RT, de Pascalis R, et al. Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 2005 ; 105 : 2862–2868. [CrossRef] [PubMed] [Google Scholar]
  22. Walter S, Weinschenk T, Stenzl A, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 2012 ; 18 : 1254–1261. [CrossRef] [PubMed] [Google Scholar]
  23. Ghiringhelli F, Menard C, Puig PE, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 2007 ; 56 : 641–648. [CrossRef] [PubMed] [Google Scholar]
  24. Zhao J, Cao Y, Lei Z, et al. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res 2010 ; 70 : 4850–4858. [CrossRef] [Google Scholar]
  25. Kasprowicz DJ, Droin N, Soper DM, et al. Dynamic regulation of FoxP3 expression controls the balance between CD4+ T cell activation and cell death. Eur J Immunol 2005 ; 35 : 3424–3432. [CrossRef] [PubMed] [Google Scholar]
  26. Zhang L, Dermawan K, Jin M, et al. Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clin Immunol 2008 ; 129 : 219–229. [CrossRef] [PubMed] [Google Scholar]
  27. de Coaña Pico. Y, Choudhury A, Kiessling R. Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol Med 2015 ; 21 : 482–491. [CrossRef] [PubMed] [Google Scholar]
  28. Emens L a, Middleton G. The interplay of immunotherapy and chemotherapy: Harnessing potential synergies. Cancer Immunol Res 2015 ; 3 : 436–443. [CrossRef] [PubMed] [Google Scholar]
  29. Butterfield LH. Cancer vaccines. Br Med J 2015 ; 350 : h988. [CrossRef] [PubMed] [Google Scholar]
  30. Devaud C, John LB, Westwood JA, et al. Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy. Oncoimmunology 2013 ; 2 : e25961. [CrossRef] [PubMed] [Google Scholar]
  31. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010 ; 363 : 711–723. [CrossRef] [PubMed] [Google Scholar]
  32. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012 ; 366 : 2443–2454. [Google Scholar]
  33. Chmielewski M, Hombach A a., Abken H. Of CARs and TRUCKs: Chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev 2014 ; 257 : 83–90. [CrossRef] [PubMed] [Google Scholar]
  34. Mkrtichyan M, Najjar YG, Raulfs EC, et al. Anti-PD-1 synergizes with cyclophosphamide to induce potent anti-tumor vaccine effects through novel mechanisms. Eur J Immunol 2011 ; 41 : 2977–2986. [CrossRef] [PubMed] [Google Scholar]
  35. Moschella F, Proietti E, Capone I, et al. Combination strategies for enhancing the efficacy of immunotherapy in cancer patients. Ann NY Acad Sci 2010 ; 1194 : 169–178. [CrossRef] [Google Scholar]
  36. Pastore A, Jurinovic V, Kridel R, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol 2015 ; 16 : 1111–1122. [CrossRef] [PubMed] [Google Scholar]
  37. Tesniere A, Schlemmer F, Boige V, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010 ; 29 : 482–491. [CrossRef] [PubMed] [Google Scholar]
  38. Vacchelli E, Martins I, Eggermont A, et al. Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2012 ; 1 : 1557–1576. [CrossRef] [PubMed] [Google Scholar]
  39. Suzuki E, Kapoor V, Jassar AS, et al. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 2005 ; 11 : 6713–6721. [CrossRef] [PubMed] [Google Scholar]
  40. Trojandt S, Knies D, Pektor S, et al. The chemotherapeutic agent topotecan differentially modulates the phenotype and function of dendritic cells. Cancer Immunol Immunother 2013 ; 62 : 1315–1326. [CrossRef] [PubMed] [Google Scholar]
  41. Li JY, Duan XF, Wang LP, et al. Selective depletion of regulatory T cell subsets by docetaxel treatment in patients with nonsmall cell lung cancer. J Immunol Res 2014 ; 2014 : 286170. [PubMed] [Google Scholar]
  42. Tanaka H, Matsushima H, Nishibu A, et al. Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation. Cancer Res 2009 ; 69 : 6987–6994. [CrossRef] [Google Scholar]
  43. Mattarollo SR, Loi S, Duret H, et al. Pivotal Role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res 2011 ; 71 : 4809–4820. [CrossRef] [Google Scholar]
  44. Cao C, Han Y, Ren Y, et al. Mitoxantrone-mediated apoptotic B16–F1 cells induce specific anti-tumor immune response. Cell Mol Immunol 2009 ; 6 : 469–475. [CrossRef] [PubMed] [Google Scholar]
  45. Van den Eynde B, Lethé B, Van Pel A, et al. The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med 1991 ; 173 : 1373–1384. [CrossRef] [PubMed] [Google Scholar]
  46. Amar-Costesec A, Godelaine D, Van den Eynde B, et al. Identification and characterization of the tumor-specific P1A gene product. Biol cell 1994 ; 81 : 195–203. [CrossRef] [PubMed] [Google Scholar]
  47. Chen YT, Scanlan MJ, Sahin U, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 1997 ; 94 : 1914–1918. [CrossRef] [Google Scholar]
  48. Wölfel T, Hauer M, Schneider J, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995 ; 269 : 1281–1284. [CrossRef] [PubMed] [Google Scholar]
  49. Peiper M, Goedegebuure PS, Linehan DC, et al. The HER2/neu-derived peptide p654–662 is a tumor-associated antigen in human pancreatic cancer recognized by cytotoxic T lymphocytes. Eur J Immunol 1997 ; 27 : 1115–1123. [CrossRef] [PubMed] [Google Scholar]
  50. Keskin DB, Reinhold B, Lee SY, et al. Direct identification of an HPV-16 tumor antigen from cervical cancer biopsy specimens. Front Immunol 2011 ; 2 : 75. [PubMed] [Google Scholar]
  51. Bloom MB, Perry-Lalley D, Robbins PF, et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 1997 ; 185 : 453–459. [CrossRef] [PubMed] [Google Scholar]
  52. Teillaud JL. Microenvironnements tumoraux : conflictuels et complémentaires. Med Sci (Paris) 2014 ; 30 : 343–466. [Google Scholar]
  53. Teillaud JL. Quand les anticorps rencontrent l’immunité antitumorale : fin de partie pour la cellule cancéreuse ? Med Sci (Paris) 2015 ; 31 : 707–708. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Teillaud JL, Watier H, Beck A. Anticorps monoclonaux en thérapeutique. Med Sci (Paris) 2009 ; 25 : 995–1196. [CrossRef] [EDP Sciences] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.