Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 4, Avril 2016
Page(s) 370 - 377
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163204015
Publié en ligne 2 mai 2016
  1. Treps L, Julie Gavard J. L’angiogenèse tumorale : quand l’arbre de vie tourne mal. Med Sci (Paris) 2015 ; 31 : 989–995. [CrossRef] [EDP Sciences] [PubMed]
  2. Dudley AC. Tumor endothelial cells. Cold Spring Harb perspect Med 2012 ; 2 : a006536. [CrossRef] [PubMed]
  3. Blay JY. Le futur des thérapeutiques ciblées en oncologie : trouver les cibles, traiter tôt et au long court. Med Sci (Paris) 2007 ; 12 : 1073–1074. [CrossRef] [EDP Sciences] [PubMed]
  4. Rosenfeld PJ, Schwatz SD, Blumenkranz MS, et al. Maximum tolerated dose of e humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology 2005 ; 112 : 1048–1053. [CrossRef] [PubMed]
  5. Ahmadizar F, Onland-Moret NC, de Boer A, et al. Efficacy and safety assessment of the addition of bevacizumab to adjuvant therapy agents in cancer patients: A systematic review and meta-analysis of randomized controlled trials. PLoS One 2015 ; 10 : e0136324. [CrossRef] [PubMed]
  6. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004 ; 350 : 2335–2342. [CrossRef] [PubMed]
  7. Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 2005 ; 65 : 671–680.
  8. Romero M, Brière J, de Bazelaire C, et al. Aflibercept-mediated early angiogenic changes in aggressive B-cell lymphoma. Cancer Chemother Pharmacol 2011 ; 68 : 1135–1143. [CrossRef] [PubMed]
  9. Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin 2010 ; 60 : 222–243. [CrossRef] [PubMed]
  10. Wang W, Jia WD, Xu GL, et al. Antitumoral activity of rapamycin mediated through inhibition of HIF-1alpha and VEGF in hepatocellular carcinoma. Dig Dis Sci 2009 ; 54 : 2128–2136. [CrossRef] [PubMed]
  11. Kauffman HM, Cherikh WS, Cheng Y, et al. Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation 2005 ; 80 : 883–889. [CrossRef] [PubMed]
  12. Murakami M, Simons M. Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol 2008 ; 15 : 215–220. [CrossRef] [PubMed]
  13. Onimaru M, Yonemitsu Y, Tanii M, et al. Fibroblast growth factor-2 gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs. Circ Res 2002 ; 91 : 923–930. [CrossRef] [PubMed]
  14. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005 ; 8 : 299–309. [CrossRef] [PubMed]
  15. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008 ; 8 : 592–603. [CrossRef] [PubMed]
  16. Ebos JM1, Lee CR, Christensen JG, et al. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci USA 2007 ; 104 : 17069–17074. [CrossRef]
  17. Nissen LJL, Cao R, Hedlund EM, et al. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 2007 ; 117 : 2766–2777. [CrossRef] [PubMed]
  18. Galaup A, Germain S. Les anticorps anti-PLGF : un nouvel outil thérapeutique anti-angiogénique ? Med Sci (Paris) 2008 ; 24 : 459–462. [CrossRef] [EDP Sciences] [PubMed]
  19. Hirota K, Semenza GL. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 2006 ; 59 : 15–26. [CrossRef] [PubMed]
  20. Rapisarda A, Melillo G. Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug Resist Updat 2009 ; 12 : 74–80. [CrossRef] [PubMed]
  21. Wang W, Li Q, Yamada T, et al. Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res 2009 ; 15 : 6630–6638. [CrossRef] [PubMed]
  22. Ide T, Kitajima Y, Miyoshi A, et al. Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. Int J Cancer 2006 ; 119 : 2750–2759. [CrossRef] [PubMed]
  23. Varna M, Gapihan G, Feugeas JP, et al. Stem cells increase in numbers in perinecrotic areas in human renal cancer. Clin Cancer Res 2015 ; 21 : 916–924. [CrossRef] [PubMed]
  24. Bousquet G, Varna M, Ferreira I, et al. Differential regulation of sunitinib targets predicts its tumor-type-specific effect on endothelial and/or tumor cell apoptosis. Cancer Chemother Pharmacol 2013 ; 72 : 1183–1193. [CrossRef] [PubMed]
  25. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009 ; 9 : 239–252. [CrossRef] [PubMed]
  26. Knievel J, Schulz WA, Greife A, et al. Multiple mechanisms mediate resistance to sorafenib in urothelial cancer. Int J Mol Sci 2014 ; 15 : 20500–20517. [CrossRef] [PubMed]
  27. Moccia F, Lodola F, Dragoni S, et al. Ca2+ signalling in endothelial progenitor cells: a novel means to improve cell-based therapy and impair tumour vascularisation. Curr Vasc Pharmacol 2014 ; 12 : 87–105. [CrossRef] [PubMed]
  28. De Groot J, Liang J, Kong LY, et al. Modulating antiangiogenic resistance by inhibiting the signal transducer and activator of transcription 3 pathway in glioblastoma. Oncotarget 2012 ; 3 : 1036–1048. [CrossRef] [PubMed]
  29. Sennino B, Ishiguro-Oonuma T, Wei Y, et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov 2012 ; 2 : 270–287. [CrossRef] [PubMed]
  30. Grepin R, Guyot M, Jacquin M, Durivault, et al. Acceleration of clear cell renal cell carcinoma growth in mice following bevacizumab/avastin treatment: the role of CXCL cytokines. Oncogene 2012 ; 31 : 1683–1694. [CrossRef] [PubMed]
  31. Giuliano S, Pages G. Mechanisms of resistance to anti-angiogenesis therapies. Biochimie 2013 ; 95 : 1110–1119. [CrossRef] [PubMed]
  32. Hu YL1, Jahangiri A, De Lay M, Aghi MK. Hypoxia-induced tumor cell autophagy mediates resistance to anti-angiogenic therapy. Autophagy 2012 ; 8 : 979–981. [CrossRef] [PubMed]
  33. Gotink KJ1, Broxterman HJ, Labots M, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res 2011 ; 17 : 7337–7346. [CrossRef] [PubMed]
  34. Kim HK, Song KS, Chung JH, Lee KR, et al. Platelet microparticles induce angiogenesis in vitro. Br J Haematol 2004 ; 124 : 376–384. [CrossRef]
  35. Rafii A, Mirshahi P, Poupot M, et al. Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours. PLoS One 2008 ; 3 : e3894. [CrossRef] [PubMed]
  36. Dong Y, Pan Q, Jiang L, et al. Tumor endothelial expression of P-glycoprotein upon microvesicular transfer of TrpC5 derived from adriamycin-resistant breast cancer cells. Biochem Biophys Res Commun 2014 ; 446 : 85–90. [CrossRef] [PubMed]
  37. Giuliano S, Cormerais Y, Dufies M, et al. Resistance to sunitinib in renal clear cell carcinoma results from sequestration in lysosomes and inhibition of the autophagic flux. Autophagy 2015 ; 11 : 1891–1904. [CrossRef] [PubMed]
  38. Huang L, Perrault C, Coelho-Martins J, et al. Induction of acquired drug resistance in endothelial cells and its involvement in anticancer therapy. J Hematol Oncol 2013 ; 6 : 49. [CrossRef] [PubMed]
  39. Huang L, Hu C, Di Benedetto M, et al. Cross-drug resistance to sunitinib induced by doxorubicin in endothelial cells. Oncol Lett 2015 ; 9 : 1287–1292. [CrossRef] [PubMed]
  40. Huang L Huang L, Hu C, et al. Induction of multiple drug resistance in HMEC-1 endothelial cells after long-term exposure to sunitinib. Onco Targets Ther 2014 ; 7 : 2249–2255.
  41. Hida K, Akiyama K, Ohga N, et al. Tumour endothelial cells acquire drug resistance in a tumour microenvironment. J Biochem 2013 ; 153 : 243–249. [CrossRef] [PubMed]
  42. Cheng L, Huang Z, Zhou W, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 2013 ; 153 : 139–152. [CrossRef] [PubMed]
  43. Streubel B, Chott A, Huber D, et al. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 2004 ; 351 : 250–259. [CrossRef] [PubMed]
  44. Schneider BP, Wang M, Radovich M. et al. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol, 2008 ; 26 : 4672–4678. Erratum. In: J Clin Oncol 2009 ; 27 : 3070. [CrossRef] [PubMed]
  45. Bousquet G, El Bouchtaoui M, Leboeuf C, et al. Tracking sub-clonal TP53 mutated tumor cells in human metastatic renal cell carcinoma. Oncotarget 2015 ; 6 : 19279–19289. [CrossRef] [PubMed]
  46. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015 ; 14 : 561–584. [CrossRef] [PubMed]
  47. Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 2015 ; 125 : 3384–3391. [CrossRef] [PubMed]
  48. Ozao-Choy J, Ma G, Kao J, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 2009 ; 69 : 2514–2522. [CrossRef] [PubMed]
  49. Varna M, Bousquet G, Ferreira I, et al. Stability of preclinical models of aggressive renal cell carcinomas. Int J Clin Exp Pathol 2014 ; 7 : 2950–2962. [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.