Free Access
Med Sci (Paris)
Volume 31, Number 11, Novembre 2015
Page(s) 964 - 967
Section Nouvelles
Published online 17 November 2015
  1. Cuvillier O. Les récepteurs de la sphingosine 1-phosphate : de la biologie à la physiopathologie. Med Sci (Paris) 2012 ; 28 : 951–957. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Cuvillier O, Ader I, Bouquerel P, et al. Activation of sphingosine kinase-1 in cancer: implications for therapeutic targeting. Curr Mol Pharmacol 2010 ; 3 : 53–65. [CrossRef] [PubMed] [Google Scholar]
  3. Newton J, Lima S, Maceyka M, Spiegel S Revisiting the sphingolipid rheostat: evolving concepts in cancer therapy. Exp Cell Res 2015 ; 333 : 195–200. [CrossRef] [PubMed] [Google Scholar]
  4. Visentin B, Vekich JA, Sibbald BJ, et al. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 2006 ; 9 : 225–238. [CrossRef] [PubMed] [Google Scholar]
  5. Ponnusamy S, Selvam SP, Mehrotra S, et al. Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med 2012 ; 4 : 761–775. [CrossRef] [PubMed] [Google Scholar]
  6. Brizuela L, Martin C, Jeannot P, et al. Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells. Mol Oncol 2014 ; 8 : 1181–1195. [CrossRef] [PubMed] [Google Scholar]
  7. Semenza GL Hypoxia-inducible factors in physiology and medicine. Cell 2012 ; 148 : 399–408. [CrossRef] [PubMed] [Google Scholar]
  8. Hasmim M, Messai Y, Noman MZ, Chouaib S L’hypoxie tumorale : un déterminant clé de la réactivité stromale et de la réponse antitumorale. Med Sci (Paris) 2014 ; 30 : 422–428. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Ceze N, Lecomte T, Watier H Anticorps monoclonaux thérapeutiques et ciblage vasculaire. Med Sci (Paris) 2009 ; 25 : 1099–1104. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Azzi S, Gavard J Vaisseaux sanguins et tumeurs ou l’art du dialogue. Med Sci (Paris) 2014 ; 30 : 408–414. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Carmeliet P, Jain RK Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 2011 ; 10 : 417–427. [Google Scholar]
  12. Gothié E, Pouyssegur J HIF-1: régulateur central de l’hypoxie. Med Sci (Paris) 2002 ; 18 : 70–78. [CrossRef] [EDP Sciences] [Google Scholar]
  13. Ader I, Brizuela L, Bouquerel P, et al. Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Res 2008 ; 68 : 8635–8642. [CrossRef] [Google Scholar]
  14. Sodhi A, Montaner S, Miyazaki H, Gutkind JS MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1alpha in rasV12 upregulation of VEGF. Biochem Biophys Res Commun 2001 ; 287 : 292–300. [CrossRef] [PubMed] [Google Scholar]
  15. Lappano R, Maggiolini M G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 2011 ; 10 : 47–60. [CrossRef] [PubMed] [Google Scholar]
  16. Ader I, Gstalder C, Bouquerel P, et al. Neutralizing S1P inhibits intratumoral hypoxia, induces vascular remodelling and sensitizes to chemotherapy in prostate cancer. Oncotarget 2015 ; 6 : 13803–13821. [CrossRef] [PubMed] [Google Scholar]
  17. Mucci LA, Powolny A, Giovannucci E, et al. Prospective study of prostate tumor angiogenesis and cancer-specific mortality in the health professionals follow-up study. J Clin Oncol 2009 ; 27 : 5627–5633. [CrossRef] [PubMed] [Google Scholar]
  18. George DJ, Halabi S, Shepard TF, et al. Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res 2001 ; 7 : 1932–1936. [PubMed] [Google Scholar]
  19. Blouw B, Song H, Tihan T, et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 2003 ; 4 : 133–146. [CrossRef] [PubMed] [Google Scholar]
  20. Jain RK Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001 ; 7 : 987–989. [CrossRef] [PubMed] [Google Scholar]
  21. Sorensen AG, Emblem KE, Polaskova P, et al. Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res 2012 ; 72 : 402–407. [CrossRef] [Google Scholar]
  22. Emblem KE, Mouridsen K, Bjornerud A, et al. Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 2013 ; 19 : 1178–1183. [CrossRef] [PubMed] [Google Scholar]
  23. Treps L, Gavard J L’angiogenèse tumorale : quand l’arbre de vie tourne mal. Med Sci (Paris) 2015 ; 31 : 989–995. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.