Free Access
Med Sci (Paris)
Volume 31, Number 10, Octobre 2015
Page(s) 912 - 919
Section M/S Revues
Published online 19 October 2015
  1. Sparks S, Quijano-Roy S, Harper A, et al. Pagon RA, Adam MP, Ardinger HH, et al. Congenital muscular dystrophy overview. GeneReviews(R) 1993 ; Seattle (WA): University of Washington. [Google Scholar]
  2. Emery AE. The muscular dystrophies. Lancet 2002 ; 359 : 687–695. [CrossRef] [PubMed] [Google Scholar]
  3. Davies KE, Nowak KJ. Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 2006 ; 7 : 762–773. [CrossRef] [PubMed] [Google Scholar]
  4. Kaplan JC, Hamroun D. The 2015 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord 2014 ; 24 : 1123–1153. [CrossRef] [PubMed] [Google Scholar]
  5. Lisi MT, Cohn RD. Congenital muscular dystrophies: new aspects of an expanding group of disorders. Biochem Biophys Acta 2007 ; 1772 : 159–172. [Google Scholar]
  6. Santoriello C, Zon LI. Hooked! Modeling human disease in zebrafish. J Clin Invest 2012 ; 122 : 2337–2343. [CrossRef] [PubMed] [Google Scholar]
  7. Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 2007 ; 8 : 353–367. [CrossRef] [PubMed] [Google Scholar]
  8. Berger J, Berger S, Hall TE, et al. Dystrophin-deficient zebrafish feature aspects of the Duchenne muscular dystrophy pathology. Neuromuscul Disord 2010 ; 20 : 826–832. [CrossRef] [PubMed] [Google Scholar]
  9. Telfer WR, Busta AS, Bonnemann CG, et al. Zebrafish models of collagen VI-related myopathies. Hum Mol Genet 2010 ; 19 : 2433–2444. [CrossRef] [PubMed] [Google Scholar]
  10. Sicinski P, Geng Y, Ryder-Cook AS, et al. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 1989 ; 244 : 1578–1580. [CrossRef] [PubMed] [Google Scholar]
  11. Bassett DI, Bryson-Richardson RJ, Daggett DF, et al. Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development 2003 ; 130 : 5851–5860. [CrossRef] [PubMed] [Google Scholar]
  12. Jackson HE, Ingham PW. Control of muscle fibre-type diversity during embryonic development: the zebrafish paradigm. Mech Dev 2013 ; 130 : 447–457. [CrossRef] [PubMed] [Google Scholar]
  13. Dou Y, Andersson-Lendahl M, Arner A. Structure and function of skeletal muscle in zebrafish early larvae. J Gen Physiol 2008 ; 131 : 445–453. [CrossRef] [PubMed] [Google Scholar]
  14. Guyon JR, Mosley AN, Zhou Y, et al. The dystrophin associated protein complex in zebrafish. Hum Mol Genet 2003 ; 12 : 601–615. [CrossRef] [PubMed] [Google Scholar]
  15. Parsons MJ, Campos I, Hirst EM, Stemple DL. Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos. Development 2002 ; 129 : 3505–3512. [PubMed] [Google Scholar]
  16. Berger J, Currie PD. Zebrafish models flex their muscles to shed light on muscular dystrophies. Dis Mod Mech 2012 ; 5 : 726–732. [CrossRef] [Google Scholar]
  17. Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 1998 ; 37 : 622–632. [CrossRef] [PubMed] [Google Scholar]
  18. Granato M, van Eeden FJ, Schach U, et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 1996 ; 123 : 399–413. [PubMed] [Google Scholar]
  19. Roostalu U, Strahle U. In vivo imaging of molecular interactions at damaged sarcolemma. Dev Cell 2012 ; 22 : 515–529. [CrossRef] [PubMed] [Google Scholar]
  20. Schulte-Merker S, Stainier DY. Out with the old, in with the new: reassessing morpholino knockdowns in light of genome editing technology. Development 2014 ; 141 : 3103–3104. [CrossRef] [PubMed] [Google Scholar]
  21. Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essential functions in the development of the zebrafish. Danio rerio. Development 1996 ; 123 : 1–36. [Google Scholar]
  22. Gibbs EM, Horstick EJ, Dowling JJ. Swimming into prominence: the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies. FEBS J 2013 ; 280 : 4187–4197. [CrossRef] [PubMed] [Google Scholar]
  23. Hall TE, Bryson-Richardson RJ, Berger S, et al. The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin alpha2-deficient congenital muscular dystrophy. Proc Natl Acad Sci USA 2007 ; 104 : 7092–7097. [CrossRef] [Google Scholar]
  24. Auer TO, Del Bene F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 2014 ; 69 : 142–150. [CrossRef] [PubMed] [Google Scholar]
  25. Sztal T, Berger S, Currie PD, Hall TE. Characterization of the laminin gene family and evolution in zebrafish. Dev Dyn 2011 ; 240 : 422–431. [CrossRef] [PubMed] [Google Scholar]
  26. Sztal TE, Sonntag C, Hall TE, Currie PD. Epistatic dissection of laminin-receptor interactions in dystrophic zebrafish muscle. Hum Mol Genet 2012 ; 21 : 4718–4731. [CrossRef] [PubMed] [Google Scholar]
  27. Wood AJ, Currie PD. Analysing regenerative potential in zebrafish models of congenital muscular dystrophy. Int J Biochem Cell Biol 2014; 56C : 30–37. [CrossRef] [Google Scholar]
  28. Gupta VA, Kawahara G, Myers JA, et al. A splice site mutation in laminin-alpha2 results in a severe muscular dystrophy and growth abnormalities in zebrafish. PloS One 2012 ; 7 : e43794. [CrossRef] [PubMed] [Google Scholar]
  29. Bonaldo P, Braghetta P, Zanetti M, et al. Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Hum Mol Genet 1998 ; 7 : 2135–2140. [CrossRef] [PubMed] [Google Scholar]
  30. Millay DP, Sargent MA, Osinska H, et al. Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat Med 2008 ; 14 : 442–447. [CrossRef] [PubMed] [Google Scholar]
  31. Merlini L, Angelin A, Tiepolo T, et al. Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. Proc Natl Acad Sci USA 2008 ; 105 : 5225–5229. [CrossRef] [Google Scholar]
  32. Charvet B, Guiraud A, Malbouyres M, et al. Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction. Development 2013 ; 140 : 4602–4613. [CrossRef] [PubMed] [Google Scholar]
  33. Rooney JE, Welser JV, Dechert MA, et al. Severe muscular dystrophy in mice that lack dystrophin and alpha7 integrin. J Cell Sci 2006 ; 119 : 2185–2195. [CrossRef] [PubMed] [Google Scholar]
  34. Jimenez-Mallebrera C, Brown SC, Sewry CA, Muntoni F. Congenital muscular dystrophy: molecular and cellular aspects. Cell Mol Life Sci 2005 ; 62 : 809–823. [CrossRef] [PubMed] [Google Scholar]
  35. Danen EH, Sonnenberg A. Integrins in regulation of tissue development and function. J Pathol 2003 ; 200 : 471–480. [CrossRef] [PubMed] [Google Scholar]
  36. Lin YY. Muscle diseases in the zebrafish. Neuromusc Dis 2012 ; 22 : 673–684. [CrossRef] [Google Scholar]
  37. Goody MF, Kelly MW, Reynolds CJ, et al. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol 2012 ; 10 : e1001409. [CrossRef] [PubMed] [Google Scholar]
  38. Gupta V, Kawahara G, Gundry SR, et al. The zebrafish dag1 mutant: a novel genetic model for dystroglycanopathies. Hum Mol Genet 2011 ; 20 : 1712–1725. [CrossRef] [PubMed] [Google Scholar]
  39. Johnson NM, Farr GH 3rd, Maves L. The HDAC inhibitor TSA ameliorates a zebrafish model of Duchenne muscular dystrophy. PLoS Curr 2013; 5. [Google Scholar]
  40. Moore CJ, Goh HT, Hewitt JE. Genes required for functional glycosylation of dystroglycan are conserved in zebrafish. Genomics 2008 ; 92 : 159–167. [CrossRef] [PubMed] [Google Scholar]
  41. Muntoni F, Torelli S, Wells DJ, Brown SC. Muscular dystrophies due to glycosylation defects: diagnosis and therapeutic strategies. Curr Opin Neurol 2011 ; 24 : 437–442. [CrossRef] [PubMed] [Google Scholar]
  42. Godfrey C, Foley AR, Clement E, Muntoni F. Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 2011 ; 21 : 278–285. [CrossRef] [PubMed] [Google Scholar]
  43. Stevens E, Carss KJ, Cirak S, et al. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of alpha-dystroglycan. Am J Hum Genet 2013 ; 92 : 354–365. [CrossRef] [PubMed] [Google Scholar]
  44. Buysse K, Riemersma M, Powell G, et al. Missense mutations in beta-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet 2013 ; 22 : 1746–1754. [CrossRef] [PubMed] [Google Scholar]
  45. Carss KJ, Stevens E, Foley AR, et al. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of alpha-dystroglycan. Am J Hum Genet 2013 ; 93 : 29–41. [CrossRef] [PubMed] [Google Scholar]
  46. Manzini MC, Tambunan DE, Hill RS, et al. Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet 2012 ; 91 : 541–547. [CrossRef] [PubMed] [Google Scholar]
  47. Roscioli T, Kamsteeg EJ, Buysse K, et al. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of alpha-dystroglycan. Nat Genet 2012 ; 44 : 581–585. [CrossRef] [PubMed] [Google Scholar]
  48. Di Costanzo S, Balasubramanian A, Pond HL, et al. POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet 2014 ; 23 : 5781–5792. [CrossRef] [PubMed] [Google Scholar]
  49. Willer T, Prados B, Falcon-Perez JM, et al. Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc Natl Acad Sci USA 2004 ; 101 : 14126–14131. [CrossRef] [Google Scholar]
  50. Steffen LS, Guyon JR, Vogel ED, et al. The zebrafish runzel muscular dystrophy is linked to the titin gene. Dev Biol 2007 ; 309 : 180–192. [CrossRef] [PubMed] [Google Scholar]
  51. Bernut A, Lutfalla G, Kremer L. Regard à travers le danio pour mieux comprendre les interactions hôte/pathogène. Med Sci (Paris) 2015 ; 31 : 638–646. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Dupret B, Angrand PO. L’ingénierie des génomes par les TALEN. Med Sci (Paris) 2014 ; 30 : 186–193. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. La Gilgenkrantz H.. révolution des CRISPR est en marche. Med Sci (Paris) 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.