Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 10, Octobre 2015
Page(s) 912 - 919
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153110018
Publié en ligne 19 octobre 2015
  1. Sparks S, Quijano-Roy S, Harper A, et al. Pagon RA, Adam MP, Ardinger HH, et al. Congenital muscular dystrophy overview. GeneReviews(R) 1993 ; Seattle (WA): University of Washington. [Google Scholar]
  2. Emery AE. The muscular dystrophies. Lancet 2002 ; 359 : 687–695. [CrossRef] [PubMed] [Google Scholar]
  3. Davies KE, Nowak KJ. Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 2006 ; 7 : 762–773. [CrossRef] [PubMed] [Google Scholar]
  4. Kaplan JC, Hamroun D. The 2015 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord 2014 ; 24 : 1123–1153. [CrossRef] [PubMed] [Google Scholar]
  5. Lisi MT, Cohn RD. Congenital muscular dystrophies: new aspects of an expanding group of disorders. Biochem Biophys Acta 2007 ; 1772 : 159–172. [Google Scholar]
  6. Santoriello C, Zon LI. Hooked! Modeling human disease in zebrafish. J Clin Invest 2012 ; 122 : 2337–2343. [CrossRef] [PubMed] [Google Scholar]
  7. Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 2007 ; 8 : 353–367. [CrossRef] [PubMed] [Google Scholar]
  8. Berger J, Berger S, Hall TE, et al. Dystrophin-deficient zebrafish feature aspects of the Duchenne muscular dystrophy pathology. Neuromuscul Disord 2010 ; 20 : 826–832. [CrossRef] [PubMed] [Google Scholar]
  9. Telfer WR, Busta AS, Bonnemann CG, et al. Zebrafish models of collagen VI-related myopathies. Hum Mol Genet 2010 ; 19 : 2433–2444. [CrossRef] [PubMed] [Google Scholar]
  10. Sicinski P, Geng Y, Ryder-Cook AS, et al. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 1989 ; 244 : 1578–1580. [CrossRef] [PubMed] [Google Scholar]
  11. Bassett DI, Bryson-Richardson RJ, Daggett DF, et al. Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development 2003 ; 130 : 5851–5860. [CrossRef] [PubMed] [Google Scholar]
  12. Jackson HE, Ingham PW. Control of muscle fibre-type diversity during embryonic development: the zebrafish paradigm. Mech Dev 2013 ; 130 : 447–457. [CrossRef] [PubMed] [Google Scholar]
  13. Dou Y, Andersson-Lendahl M, Arner A. Structure and function of skeletal muscle in zebrafish early larvae. J Gen Physiol 2008 ; 131 : 445–453. [CrossRef] [PubMed] [Google Scholar]
  14. Guyon JR, Mosley AN, Zhou Y, et al. The dystrophin associated protein complex in zebrafish. Hum Mol Genet 2003 ; 12 : 601–615. [CrossRef] [PubMed] [Google Scholar]
  15. Parsons MJ, Campos I, Hirst EM, Stemple DL. Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos. Development 2002 ; 129 : 3505–3512. [PubMed] [Google Scholar]
  16. Berger J, Currie PD. Zebrafish models flex their muscles to shed light on muscular dystrophies. Dis Mod Mech 2012 ; 5 : 726–732. [CrossRef] [Google Scholar]
  17. Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 1998 ; 37 : 622–632. [CrossRef] [PubMed] [Google Scholar]
  18. Granato M, van Eeden FJ, Schach U, et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 1996 ; 123 : 399–413. [PubMed] [Google Scholar]
  19. Roostalu U, Strahle U. In vivo imaging of molecular interactions at damaged sarcolemma. Dev Cell 2012 ; 22 : 515–529. [CrossRef] [PubMed] [Google Scholar]
  20. Schulte-Merker S, Stainier DY. Out with the old, in with the new: reassessing morpholino knockdowns in light of genome editing technology. Development 2014 ; 141 : 3103–3104. [CrossRef] [PubMed] [Google Scholar]
  21. Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essential functions in the development of the zebrafish. Danio rerio. Development 1996 ; 123 : 1–36. [Google Scholar]
  22. Gibbs EM, Horstick EJ, Dowling JJ. Swimming into prominence: the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies. FEBS J 2013 ; 280 : 4187–4197. [CrossRef] [PubMed] [Google Scholar]
  23. Hall TE, Bryson-Richardson RJ, Berger S, et al. The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin alpha2-deficient congenital muscular dystrophy. Proc Natl Acad Sci USA 2007 ; 104 : 7092–7097. [CrossRef] [Google Scholar]
  24. Auer TO, Del Bene F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 2014 ; 69 : 142–150. [CrossRef] [PubMed] [Google Scholar]
  25. Sztal T, Berger S, Currie PD, Hall TE. Characterization of the laminin gene family and evolution in zebrafish. Dev Dyn 2011 ; 240 : 422–431. [CrossRef] [PubMed] [Google Scholar]
  26. Sztal TE, Sonntag C, Hall TE, Currie PD. Epistatic dissection of laminin-receptor interactions in dystrophic zebrafish muscle. Hum Mol Genet 2012 ; 21 : 4718–4731. [CrossRef] [PubMed] [Google Scholar]
  27. Wood AJ, Currie PD. Analysing regenerative potential in zebrafish models of congenital muscular dystrophy. Int J Biochem Cell Biol 2014; 56C : 30–37. [CrossRef] [Google Scholar]
  28. Gupta VA, Kawahara G, Myers JA, et al. A splice site mutation in laminin-alpha2 results in a severe muscular dystrophy and growth abnormalities in zebrafish. PloS One 2012 ; 7 : e43794. [CrossRef] [PubMed] [Google Scholar]
  29. Bonaldo P, Braghetta P, Zanetti M, et al. Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Hum Mol Genet 1998 ; 7 : 2135–2140. [CrossRef] [PubMed] [Google Scholar]
  30. Millay DP, Sargent MA, Osinska H, et al. Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat Med 2008 ; 14 : 442–447. [CrossRef] [PubMed] [Google Scholar]
  31. Merlini L, Angelin A, Tiepolo T, et al. Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. Proc Natl Acad Sci USA 2008 ; 105 : 5225–5229. [CrossRef] [Google Scholar]
  32. Charvet B, Guiraud A, Malbouyres M, et al. Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction. Development 2013 ; 140 : 4602–4613. [CrossRef] [PubMed] [Google Scholar]
  33. Rooney JE, Welser JV, Dechert MA, et al. Severe muscular dystrophy in mice that lack dystrophin and alpha7 integrin. J Cell Sci 2006 ; 119 : 2185–2195. [CrossRef] [PubMed] [Google Scholar]
  34. Jimenez-Mallebrera C, Brown SC, Sewry CA, Muntoni F. Congenital muscular dystrophy: molecular and cellular aspects. Cell Mol Life Sci 2005 ; 62 : 809–823. [CrossRef] [PubMed] [Google Scholar]
  35. Danen EH, Sonnenberg A. Integrins in regulation of tissue development and function. J Pathol 2003 ; 200 : 471–480. [CrossRef] [PubMed] [Google Scholar]
  36. Lin YY. Muscle diseases in the zebrafish. Neuromusc Dis 2012 ; 22 : 673–684. [CrossRef] [Google Scholar]
  37. Goody MF, Kelly MW, Reynolds CJ, et al. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol 2012 ; 10 : e1001409. [CrossRef] [PubMed] [Google Scholar]
  38. Gupta V, Kawahara G, Gundry SR, et al. The zebrafish dag1 mutant: a novel genetic model for dystroglycanopathies. Hum Mol Genet 2011 ; 20 : 1712–1725. [CrossRef] [PubMed] [Google Scholar]
  39. Johnson NM, Farr GH 3rd, Maves L. The HDAC inhibitor TSA ameliorates a zebrafish model of Duchenne muscular dystrophy. PLoS Curr 2013; 5. [Google Scholar]
  40. Moore CJ, Goh HT, Hewitt JE. Genes required for functional glycosylation of dystroglycan are conserved in zebrafish. Genomics 2008 ; 92 : 159–167. [CrossRef] [PubMed] [Google Scholar]
  41. Muntoni F, Torelli S, Wells DJ, Brown SC. Muscular dystrophies due to glycosylation defects: diagnosis and therapeutic strategies. Curr Opin Neurol 2011 ; 24 : 437–442. [CrossRef] [PubMed] [Google Scholar]
  42. Godfrey C, Foley AR, Clement E, Muntoni F. Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 2011 ; 21 : 278–285. [CrossRef] [PubMed] [Google Scholar]
  43. Stevens E, Carss KJ, Cirak S, et al. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of alpha-dystroglycan. Am J Hum Genet 2013 ; 92 : 354–365. [CrossRef] [PubMed] [Google Scholar]
  44. Buysse K, Riemersma M, Powell G, et al. Missense mutations in beta-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet 2013 ; 22 : 1746–1754. [CrossRef] [PubMed] [Google Scholar]
  45. Carss KJ, Stevens E, Foley AR, et al. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of alpha-dystroglycan. Am J Hum Genet 2013 ; 93 : 29–41. [CrossRef] [PubMed] [Google Scholar]
  46. Manzini MC, Tambunan DE, Hill RS, et al. Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet 2012 ; 91 : 541–547. [CrossRef] [PubMed] [Google Scholar]
  47. Roscioli T, Kamsteeg EJ, Buysse K, et al. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of alpha-dystroglycan. Nat Genet 2012 ; 44 : 581–585. [CrossRef] [PubMed] [Google Scholar]
  48. Di Costanzo S, Balasubramanian A, Pond HL, et al. POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet 2014 ; 23 : 5781–5792. [CrossRef] [PubMed] [Google Scholar]
  49. Willer T, Prados B, Falcon-Perez JM, et al. Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc Natl Acad Sci USA 2004 ; 101 : 14126–14131. [CrossRef] [Google Scholar]
  50. Steffen LS, Guyon JR, Vogel ED, et al. The zebrafish runzel muscular dystrophy is linked to the titin gene. Dev Biol 2007 ; 309 : 180–192. [CrossRef] [PubMed] [Google Scholar]
  51. Bernut A, Lutfalla G, Kremer L. Regard à travers le danio pour mieux comprendre les interactions hôte/pathogène. Med Sci (Paris) 2015 ; 31 : 638–646. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Dupret B, Angrand PO. L’ingénierie des génomes par les TALEN. Med Sci (Paris) 2014 ; 30 : 186–193. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. La Gilgenkrantz H.. révolution des CRISPR est en marche. Med Sci (Paris) 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.