Free Access
Med Sci (Paris)
Volume 31, Number 10, Octobre 2015
Page(s) 895 - 903
Section M/S Revues
Published online 19 October 2015
  1. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science 1996 ; 272 : 60–66. [CrossRef] [PubMed] [Google Scholar]
  2. Briskin M, Winsor-Hines D, Shyjan A, et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol 1997 ; 151 : 97–110. [PubMed] [Google Scholar]
  3. Nathan C.. Points of control in inflammation. Nature 2002 ; 420 : 846–852. [CrossRef] [PubMed] [Google Scholar]
  4. Adams DH, Eksteen B. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat Rev Immunol 2006 ; 6 : 244–251. [CrossRef] [PubMed] [Google Scholar]
  5. Rivera-Nieves J, Olson T, Bamias G, et al. L-selectin, alpha 4 beta 1, and alpha 4 beta 7 integrins participate in CD4+ T cell recruitment to chronically inflamed small intestine. J Immunol 2005 ; 174 : 2343–2352. [CrossRef] [PubMed] [Google Scholar]
  6. Leung-Theung-Long S, Guerder S. Les cellules Th17, une nouvelle population de cellules T CD4 effectrices pro-inflammatoires. Med Sci (Paris) 2008 ; 24 : 972–976. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Dandekar S, George MD, Baumler AJ. Th17 cells, HIV and the gut mucosal barrier. Curr Opin HIV AIDS 2010 ; 5 : 173–178. [CrossRef] [PubMed] [Google Scholar]
  8. Feagan BG, Greenberg GR, Wild G, et al. Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N Engl J Med 2005 ; 352 : 2499–2507. [CrossRef] [PubMed] [Google Scholar]
  9. Soler D, Chapman T, Yang LL, et al. The binding specificity and selective antagonism of vedolizumab, an anti-alpha4beta7 integrin therapeutic antibody in development for inflammatory bowel diseases. J Pharmacol Exp Ther 2009 ; 330 : 864–875. [CrossRef] [PubMed] [Google Scholar]
  10. Yednock TA, Cannon C, Fritz LC, et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992 ; 356 : 63–66. [CrossRef] [PubMed] [Google Scholar]
  11. Hesterberg PE, Winsor-Hines D, Briskin MJ, et al. Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin alpha 4 beta 7. Gastroenterology 1996 ; 111 : 1373–1380. [CrossRef] [PubMed] [Google Scholar]
  12. Ghosh S, Goldin E, Gordon FH, et al. Natalizumab for active Crohn’s disease. N Engl J Med 2003 ; 348 : 24–32. [CrossRef] [PubMed] [Google Scholar]
  13. Targan SR, Feagan BG, Fedorak RN, et al. Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology 2007 ; 132 : 1672–1683. [CrossRef] [PubMed] [Google Scholar]
  14. Sandborn WJ, Colombel JF, Enns R, et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med 2005 ; 353 : 1912–1925. [CrossRef] [PubMed] [Google Scholar]
  15. Louapre C, Maillart E, Papeix C, Lubetzki C. Nouveautés thérapeutiques et stratégies émergentes dans la sclérose en plaques. Med Sci (Paris) 2013 ; 29 : 1105–1110. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Takazoe M, Watanabe M, Kawaguchi T, et al. S1066 oral alpha-4 integrin inhibitor (AJM300) in patients with active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 2009 ; 136 : A-181. [CrossRef] [Google Scholar]
  17. Stefanich EG, Danilenko DM, Wang H, et al. A humanized monoclonal antibody targeting the beta7 integrin selectively blocks intestinal homing of T lymphocytes. Br J Pharmacol 2011 ; 162 : 1855–1870. [CrossRef] [PubMed] [Google Scholar]
  18. Rutgeerts PJ, Fedorak RN, Hommes DW, et al. A randomised phase I study of etrolizumab (rhuMAb beta7) in moderate to severe ulcerative colitis. Gut 2013 ; 62 : 1122–1130. [CrossRef] [PubMed] [Google Scholar]
  19. Vermeire S, O’Byrne S, Keir M, et al. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet 2014 ; 384 : 309–318. [CrossRef] [PubMed] [Google Scholar]
  20. Vermeire S, Ghosh S, Panes J, et al. The mucosal addressin cell adhesion molecule antibody PF-00547,659 in ulcerative colitis: a randomised study. Gut 2011 ; 60 : 1068–1075. [CrossRef] [PubMed] [Google Scholar]
  21. Haase AT. Targeting early infection to prevent HIV-1 mucosal transmission. Nature 2010 ; 464 : 217–223. [CrossRef] [PubMed] [Google Scholar]
  22. Haase AT. Early events in sexual transmission of HIV and SIV and opportunities for interventions. Annu Rev Med 2011 ; 62 : 127–139. [CrossRef] [PubMed] [Google Scholar]
  23. Kader M, Wang X, Piatak M, et al. Alpha4+beta7(hi)CD4+ memory T cells harbor most Th-17 cells and are preferentially infected during acute SIV infection. Mucosal Immunol 2009 ; 2 : 439–449. [CrossRef] [PubMed] [Google Scholar]
  24. Kelly KA, Wiley D, Wiesmeier E, et al. The combination of the gastrointestinal integrin (alpha4beta7) and selectin ligand enhances T-cell migration to the reproductive tract during infection with Chlamydia trachomatis. Am J Reprod Immunol 2009 ; 61 : 446–452. [CrossRef] [PubMed] [Google Scholar]
  25. Farstad IN, Halstensen TS, Lien B, et al. Distribution of beta 7 integrins in human intestinal mucosa and organized gut-associated lymphoid tissue. Immunology 1996 ; 89 : 227–237. [CrossRef] [PubMed] [Google Scholar]
  26. Cicala C, Martinelli E, McNally JP, et al. The integrin alpha4beta7 forms a complex with cell-surface CD4 and defines a T-cell subset that is highly susceptible to infection by HIV-1. Proc Natl Acad Sci USA 2009 ; 106 : 20877–20882. [CrossRef] [PubMed] [Google Scholar]
  27. Reeves RK, Evans TI, Gillis J, Johnson RP. Simian immunodeficiency virus infection induces expansion of alpha4beta7+ and cytotoxic CD56+ NK cells. J Virol 2010 ; 84 : 8959–8963. [CrossRef] [PubMed] [Google Scholar]
  28. Wang X, Xu H, Gill AF, et al. Monitoring alpha4beta7 integrin expression on circulating CD4+ T cells as a surrogate marker for tracking intestinal CD4+ T-cell loss in SIV infection. Mucosal Immunol 2009 ; 2 : 518–526. [CrossRef] [PubMed] [Google Scholar]
  29. Hartigan-O’Connor DJ, Abel K, Van Rompay KK, et al. SIV replication in the infected Rhesus macaque is limited by the size of the preexisting TH17 cell compartment. Sci Transl Med 2012 ; 4 : 136ra169. [Google Scholar]
  30. Mavigner M, Cazabat M, Dubois M, et al. Altered CD4+ T cell homing to the gut impairs mucosal immune reconstitution in treated HIV-infected individuals. J Clin Invest 2012 ; 122 : 62–69. [CrossRef] [PubMed] [Google Scholar]
  31. Brenchley JM, Paiardini M, Knox KS, et al. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 2008 ; 112 : 2826–2835. [CrossRef] [PubMed] [Google Scholar]
  32. Kinter AL, Hennessey M, Bell A, et al. CD25+CD4+ regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med 2004 ; 200 : 331–343. [CrossRef] [PubMed] [Google Scholar]
  33. Schulze Zur Wiesch J, Thomssen A, Hartjen P, et al. Comprehensive analysis of frequency and phenotype of T regulatory cells in HIV infection: CD39 expression of FoxP3+ T regulatory cells correlates with progressive disease. J Virol 2011 ; 85 : 1287–1297. [CrossRef] [PubMed] [Google Scholar]
  34. Arthos J, Cicala C, Martinelli E, et al. HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells. Nat Immunol 2008 ; 9 : 301–309. [CrossRef] [PubMed] [Google Scholar]
  35. Budde ML, Lhost JJ, Dudley DM, et al. Integrin alpha4beta7 is downregulated on the surfaces of simian immunodeficiency virus SIVmac239-infected cells. J Virol 2010 ; 84 : 6344–6351. [CrossRef] [PubMed] [Google Scholar]
  36. Nawaz F, Cicala C, Van Ryk D, et al. The genotype of early-transmitting HIV gp120s promotes alpha(4)beta(7)-reactivity, revealing alpha(4)beta(7)/CD4 T cells as key targets in mucosal transmission. PLoS Pathog 2011 ; 7 : e1001301. [CrossRef] [PubMed] [Google Scholar]
  37. Liu J, Bartesaghi A, Borgnia MJ, et al. Molecular architecture of native HIV-1 gp120 trimers. Nature 2008 ; 455 : 109–113. [CrossRef] [PubMed] [Google Scholar]
  38. Tjomsland V, Ellegard R, Che K, et al. Complement opsonization of HIV-1 enhances the uptake by dendritic cells and involves the endocytic lectin and integrin receptor families. PLoS One 2011 ; 6 : e23542. [CrossRef] [PubMed] [Google Scholar]
  39. Ansari AA, Reimann KA, Mayne AE, et al. Blocking of alpha4beta7 gut-homing integrin during acute infection leads to decreased plasma and gastrointestinal tissue viral loads in simian immunodeficiency virus-infected rhesus macaques. J Immunol 2011 ; 186 : 1044–1059. [CrossRef] [PubMed] [Google Scholar]
  40. Pauls E, Ballana E, Moncunill G, et al. Evaluation of the anti-HIV activity of natalizumab, an antibody against integrin alpha4. AIDS 2009 ; 23 : 266–268. [CrossRef] [PubMed] [Google Scholar]
  41. Parrish NF, Wilen CB, Banks LB, et al. Transmitted/founder and chronic subtype C HIV-1 use CD4 and CCR5 receptors with equal efficiency and are not inhibited by blocking the integrin alpha4beta7. PLoS Pathog 2012 ; 8 : e1002686. [CrossRef] [PubMed] [Google Scholar]
  42. Cicala C, Arthos J, Fauci AS. HIV-1 envelope, integrins and co-receptor use in mucosal transmission of HIV. J Transl Med 2011 ; 9 (suppl 1) : S2. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.