Free Access
Issue
Med Sci (Paris)
Volume 31, Number 10, Octobre 2015
Page(s) 889 - 894
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153110015
Published online 19 October 2015
  1. Elowitz MB, Levine AJ, Siggia ED, et al. Stochastic gene expression in a single cell. Science 2002 ; 297 : 1183–1186. [CrossRef] [PubMed] [Google Scholar]
  2. Raser JM, O’Shea EK. Control of stochasticity in eukaryotic gene expression. Science 2004 ; 304 : 1811–1814. [CrossRef] [PubMed] [Google Scholar]
  3. Cai L, Friedman N, Xie XS. Stochastic protein expression in individual cells at the single molecule level. Nature 2006 ; 440 : 358–362. [CrossRef] [PubMed] [Google Scholar]
  4. Pedraza JM, van Oudenaarden A. Noise propagation in gene networks. Science 2005 ; 307 : 1965–1969. [CrossRef] [PubMed] [Google Scholar]
  5. Taniguchi Y, Choi PJ, Li GW, et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 2010 ; 329 : 533–538. [CrossRef] [PubMed] [Google Scholar]
  6. Kiviet DJ, Nghe P, Walker N, et al. Stochasticity of metabolism and growth at the single-cell level. Nature 2014 ; 514 : 376–379. [CrossRef] [PubMed] [Google Scholar]
  7. Nghe P, Boulineau S, Tans SJ. Fluctuations aléatoires dans le métabolisme et la croissance cellulaires. Med Sci (Paris) 2015 ; 31 : 233–235. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Yang S, Kim S, Lim YR, et al. Contribution of RNA polymerase concentration variation to protein expression noise. Nat Commun 2014 ; 5 : 4761. [CrossRef] [PubMed] [Google Scholar]
  9. Dunlop MJ, Cox RS, Levine JH, et al. Regulatory activity revealed by dynamic correlations in gene expression noise. Nat Genet 2008 ; 40 : 1493–1498. [CrossRef] [PubMed] [Google Scholar]
  10. Bowsher CG, Swain PS. Identifying sources of variation and the flow of information in biochemical networks. Proc Natl Acad Sci USA 2012 ; 109 : 1320–1328. [Google Scholar]
  11. Delbrück M.. The burst size distribution in the growth of bacterial viruses (bacteriophages). J Bacteriol 1945 ; 50 : 131. [Google Scholar]
  12. Arkin A, Ross J, McAdams HH. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 1998 ; 149 : 1633–1648. [PubMed] [Google Scholar]
  13. Kussell E, Leibler S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 2005 ; 309 : 2075–2078. [CrossRef] [PubMed] [Google Scholar]
  14. Boulineau S, Tostevin F, Kiviet DJ, et al. Single-cell dynamics reveals sustained growth during diauxic shifts. PLoS One 2013 ; 8 : e61686. [CrossRef] [PubMed] [Google Scholar]
  15. Robert L, Paul G, Chen Y, et al. Pre-dispositions and epigenetic inheritance in the Escherichia coli lactose operon bistable switch. Mol Syst Biol 2010 ; 6 : 357. [CrossRef] [PubMed] [Google Scholar]
  16. Solopova A, van Gestel J, Weissing FJ, et al. Bet-hedging during bacterial diauxic shift. Proc Natl Acad Sci USA 2014 ; 111 : 7427–7432. [CrossRef] [Google Scholar]
  17. Novick A, Weiner M. Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA 1957 ; 43 : 553–566. [CrossRef] [Google Scholar]
  18. Locke JC, Young JW, Fontes M, et al. Stochastic pulse regulation in bacterial stress response. Science 2011 ; 334 : 366–369. [CrossRef] [PubMed] [Google Scholar]
  19. Balaban NQ, Merrin J, Chait R, et al. Bacterial persistence as a phenotypic switch. Science 2004 ; 305 : 1622–1625. [CrossRef] [PubMed] [Google Scholar]
  20. Deris JB, Kim M, Zhang Z, et al. The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science 2013 ; 342 : 1237435. [CrossRef] [PubMed] [Google Scholar]
  21. Simons BD, Clevers H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 2011 ; 145 : 851–862. [CrossRef] [PubMed] [Google Scholar]
  22. Abkowitz JL, Catlin SN, Guttorp P. Evidence that hematopoiesis may be a stochastic process in vivo. Nat Med 1996 ; 2 : 190–197. [CrossRef] [PubMed] [Google Scholar]
  23. Chang HH, Hemberg M, Barahona M, et al. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 2008 ; 453 : 544–547. [CrossRef] [PubMed] [Google Scholar]
  24. Gomes FL, Zhang G, Carbonell F, et al. Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development 2011 ; 138 : 227–235. [CrossRef] [PubMed] [Google Scholar]
  25. Lopez-Garcia C, Klein AM, Simons BD, et al. Intestinal stem cell replacement follows a pattern of neutral drift. Science 2010 ; 330 : 822–825. [CrossRef] [PubMed] [Google Scholar]
  26. Mascré G, Dekoninck S, Drogat B, et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 2012 ; 489 : 257–262. [CrossRef] [PubMed] [Google Scholar]
  27. Buganim Y, Faddah DA, Cheng AW, et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012 ; 150 : 1209–1222. [CrossRef] [PubMed] [Google Scholar]
  28. Fang M, Xie H, Dougan SK, et al. Stochastic cytokine expression induces mixed T helper cell states. PLoS Biol 2013 ; 11 : e1001618. [CrossRef] [PubMed] [Google Scholar]
  29. Brock A, Chang H, Huang S. Non-genetic heterogeneity: a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet 2009 ; 10 : 336–342. [Google Scholar]
  30. Gupta PB, Fillmore CM, Jiang G, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011 ; 146 : 633–644. [CrossRef] [PubMed] [Google Scholar]
  31. Driessens G, Beck B, Caauwe A, et al. Defining the mode of tumour growth by clonal analysis. Nature 2012 ; 488 : 527–530. [CrossRef] [PubMed] [Google Scholar]
  32. Roux J, Hafner M, Bandara S, et al. Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold. Mol Syst Biol 2015 ; 11 : 803. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.