Free Access
Med Sci (Paris)
Volume 31, Number 6-7, Juin–Juillet 2015
Page(s) 638 - 646
Section M/S Revues
Published online 07 July 2015
  1. López Hernández Y, Yero D, Pinos-Rodríguez JM, et al. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens. Front Microbiol 2015 ; 6 : 38. [CrossRef] [PubMed] [Google Scholar]
  2. Lemaitre B, Reichhart JM, Hoffmann JA. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 1997 ; 94 : 14614–14619. [CrossRef] [Google Scholar]
  3. Sprynski N, Valade E, Neulat-Ripoll F. Galleria mellonella as an infection model for select agents. Methods Mol Biol 2014 ; 1197 : 3–9. [CrossRef] [PubMed] [Google Scholar]
  4. Tan MW, Mahajan-Miklos S, Ausubel FM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 1999 ; 96 : 715–720. [CrossRef] [Google Scholar]
  5. Abnave P, Mottola G, Gimenez G, et al. Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe 2014 ; 16 : 338–350. [CrossRef] [PubMed] [Google Scholar]
  6. Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 1981 ; 291 : 293–296. [CrossRef] [PubMed] [Google Scholar]
  7. Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013 ; 496 : 498–503. [CrossRef] [PubMed] [Google Scholar]
  8. Levraud JP, Boudinot P. Arche de Noé immunologique - Le système immunitaire des poissons téléostéens. Med Sci (Paris) 2009 ; 25 : 405–411. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Vaart M van der, Spaink HP, Meijer AH. Pathogen recognition and activation of the innate immune response in zebrafish. Adv Hematol 2012 ; 2012 : 159807. [PubMed] [Google Scholar]
  10. Lam SH, Chua HL, Gong Z, et al. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 2004 ; 28 : 9–28. [CrossRef] [PubMed] [Google Scholar]
  11. Clay H, Davis JM, Beery D, et al. Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2007 ; 2 : 29–39. [CrossRef] [PubMed] [Google Scholar]
  12. Bernut A, Herrmann J-L, Kissa K, et al. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc Natl Acad Sci USA 2014 ; 111 : E943–E952. [CrossRef] [Google Scholar]
  13. Renshaw SA, Loynes CA, Trushell DMI, et al. A transgenic zebrafish model of neutrophilic inflammation. Blood 2006 ; 108 : 3976–3978. [CrossRef] [PubMed] [Google Scholar]
  14. Rowe HM, Withey JH, Neely MN. Zebrafish as a model for zoonotic aquatic pathogens. Dev Comp Immunol 2014 ; 46 : 96–107. [CrossRef] [PubMed] [Google Scholar]
  15. Benard EL, Sar AM van der, Ellett F, et al. Infection of zebrafish embryos with intracellular bacterial pathogens. J Vis Exp 2012 ; 61 : e3781. doi: 10.3791/3781. [Google Scholar]
  16. Torraca V, Masud S, Spaink HP, et al. Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis Model Mech 2014 ; 7 : 785–797. [CrossRef] [PubMed] [Google Scholar]
  17. Ramakrishnan L. Looking within the zebrafish to understand the tuberculous granuloma. Adv Exp Med Biol 2013 ; 783 : 251–266. [CrossRef] [PubMed] [Google Scholar]
  18. Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 2009 ; 136 : 37–49. [CrossRef] [PubMed] [Google Scholar]
  19. Bernut A, Moigne V Le, Lesne T, et al. In vivo assessment of drug efficacy against Mycobacterium abscessus using the embryonic zebrafish test system. Antimicrob Agents Chemother 2014 ; 58 : 4054–4063. [CrossRef] [PubMed] [Google Scholar]
  20. Bernut A, Herrmann JL, Lutfalla G, et al. Les cordes mycobactériennes - Un nouveau moyen d’échappement au système immunitaire ? Med Sci (Paris) 2014 ; 30 : 499–502. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  21. Mostowy S, Boucontet L, Mazon Moya MJ, et al. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog 2013 ; 9 : e1003588. [CrossRef] [PubMed] [Google Scholar]
  22. Lamoth F, Bochud PY. Aspergillose invasive : perspectives en infectiologie préventive. Med Sci (Paris) 2009 ; 25 : 669–672. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Knox BP, Deng Q, Rood M, et al. Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae. Eukaryotic Cell 2014 ; 13 : 1266–1277. [CrossRef] [PubMed] [Google Scholar]
  24. Palha N, Guivel-Benhassine F, Briolat V, et al. Real-time whole-body visualization of chikungunya virus infection and host interferon response in zebrafish. PLoS Pathog 2013 ; 9 : e1003619. [CrossRef] [PubMed] [Google Scholar]
  25. Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 2005 ; 4 : 35–44. [CrossRef] [PubMed] [Google Scholar]
  26. Adams KN, Takaki K, Connolly LE, et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 2011 ; 145 : 39–53. [CrossRef] [PubMed] [Google Scholar]
  27. Makarov V, Lechartier B, Zhang M, et al. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol Med 2014 ; 6 : 372–383. [CrossRef] [PubMed] [Google Scholar]
  28. Spaink HP, Cui C, Wiweger MI, et al. Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods 2013 ; 62 : 246–254. [CrossRef] [PubMed] [Google Scholar]
  29. Van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, et al. A star with stripes: zebrafish as an infection model. Trends Microbiol 2004 ; 12 : 451–457. [CrossRef] [PubMed] [Google Scholar]
  30. Vergunst AC, Meijer AH, Renshaw SA, et al. Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infect Immun 2010 ; 78 : 1495–1508. [CrossRef] [PubMed] [Google Scholar]
  31. Clatworthy AE, Lee JSW, Leibman M, et al. Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect Immun 2009 ; 77 : 1293–1303. [CrossRef] [PubMed] [Google Scholar]
  32. Paranjpye RN, Myers MS, Yount EC, et al. Zebrafish as a model for Vibrio parahaemolyticus virulence. Microbiology 2013 ; 159 : 2605–2615. [CrossRef] [PubMed] [Google Scholar]
  33. Davis JM, Haake DA, Ramakrishnan L. Leptospira interrogans stably infects zebrafish embryos, altering phagocyte behavior and homing to specific tissues. PLoS Negl Trop Dis 2009 ; 3 : e463. [CrossRef] [PubMed] [Google Scholar]
  34. Levraud JP, Disson O, Kissa K, et al. Real-time observation of Listeria monocytogenes-phagocyte interactions in living zebrafish larvae. Infect Immun 2009 ; 77 : 3651–3660. [CrossRef] [PubMed] [Google Scholar]
  35. Prajsnar TK, Cunliffe VT, Foster SJ, et al. A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cell Microbiol 2008 ; 10 : 2312–2325. [CrossRef] [PubMed] [Google Scholar]
  36. Rounioja S, Saralahti A, Rantala L, et al. Defense of zebrafish embryos against Streptococcus pneumoniae infection is dependent on the phagocytic activity of leukocytes. Dev Comp Immunol 2012 ; 36 : 342–348. [CrossRef] [PubMed] [Google Scholar]
  37. Patterson H, Saralahti A, Parikka M, et al. Adult zebrafish model of bacterial meningitis in Streptococcus agalactiae infection. Dev Comp Immunol 2012 ; 38 : 447–455. [CrossRef] [PubMed] [Google Scholar]
  38. Prajsnar TK, Renshaw SA, Ogryzko NV, et al. Zebrafish as a novel vertebrate model to dissect enterococcal pathogenesis. Infect Immun 2013 ; 81 : 4271–4279. [CrossRef] [PubMed] [Google Scholar]
  39. Davis JM, Clay H, Lewis JL, et al. Real-time visualization of Mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 2002 ; 17 : 693–702. [CrossRef] [PubMed] [Google Scholar]
  40. Chao CC, Hsu PC, Jen CF, et al. Zebrafish as a model host for Candida albicans infection. Infect Immun 2010 ; 78 : 2512–2521. [CrossRef] [PubMed] [Google Scholar]
  41. Burgos JS, Ripoll-Gomez J, Alfaro JM, et al. Zebrafish as a new model for herpes simplex virus type 1 infection. Zebrafish 2008 ; 5 : 323–333. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.