Free Access
Issue
Med Sci (Paris)
Volume 31, Number 6-7, Juin–Juillet 2015
Page(s) 629 - 637
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153106016
Published online 07 July 2015
  1. Gessain A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol 2012 ; 3 : 388. [CrossRef] [PubMed] [Google Scholar]
  2. Gessain A, Mahieux R. Tropical spastic paraparesis and HTLV-1 associated myelopathy: clinical, epidemiological, virological and therapeutic aspects. Rev Neurol (Paris) 2012 ; 168 : 257–269. [CrossRef] [PubMed] [Google Scholar]
  3. Pique C, Jones KS. Pathways of cell-cell transmission of HTLV-1. Front Microbiol 2012 ; 3 : 378. [CrossRef] [PubMed] [Google Scholar]
  4. Cook LB, Melamed A, Niederer H, et al. The role of HTLV-1 clonality, proviral structure, and genomic integration site in adult T-cell leukemia/lymphoma. Blood 2014 ; 123 : 3925–3931. [CrossRef] [PubMed] [Google Scholar]
  5. Journo C, Mahieux R. HTLV-1 and innate immunity. Viruses 2011 ; 3 : 1374–1394. [CrossRef] [PubMed] [Google Scholar]
  6. Sze A, Belgnaoui SM, Olagnier D, et al. Host restriction factor SAMHD1 limits human T cell leukemia virus type 1 infection of monocytes via STING-mediated apoptosis. Cell Host Microbe 2013 ; 14 : 422–434. [CrossRef] [PubMed] [Google Scholar]
  7. Nascimento CR, Lima MA, de Andrada Serpa MJ, et al. Monocytes from HTLV-1-infected patients are unable to fully mature into dendritic cells. Blood 2011 ; 117 : 489–499. [CrossRef] [PubMed] [Google Scholar]
  8. Jones KS, Cari PS, Huang YK, et al. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4+ T cells. Nat Med 2008 ; 14 : 429–436. [CrossRef] [PubMed] [Google Scholar]
  9. Jones KS, Lambert S, Bouttier M, et al. Molecular aspects of HTLV-1 entry: functional domains of the HTLV-1 surface subunit (SU) and their relationships to the entry receptors. Viruses 2011 ; 3 : 794–810. [CrossRef] [PubMed] [Google Scholar]
  10. Takenouchi N, Jones KS, Lisinski I, et al. GLUT1 is not the primary binding receptor but is associated with cell-to-cell transmission of human T-cell leukemia virus type 1. J Virol 2007 ; 81 : 1506–1510. [CrossRef] [PubMed] [Google Scholar]
  11. Manel N, Battini JL, Sitbon M. Human T cell leukemia virus envelope binding and virus entry are mediated by distinct domains of the glucose transporter GLUT1. J Biol Chem 2005 ; 280 : 29025–29029. [CrossRef] [PubMed] [Google Scholar]
  12. Cheng W, Fu D, Wei ZF, et al. NRP-1 expression in bladder cancer and its implications for tumor progression. Tumour Biol 2014 ; 35 : 6089–6094. [CrossRef] [PubMed] [Google Scholar]
  13. Parker MW, Xu P, Guo HF, Vander Kooi CW. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition. PLoS One 2012 ; 7 : e49177. [CrossRef] [PubMed] [Google Scholar]
  14. Ellis LM. The role of neuropilins in cancer. Mol Cancer Ther 2006 ; 5 : 1099–1107. [CrossRef] [PubMed] [Google Scholar]
  15. Jain P, Manuel SL, Khan ZK, et al. DC-SIGN mediates cell-free infection and transmission of human T-cell lymphotropic virus type 1 by dendritic cells. J Virol 2009 ; 83 : 10908–10921. [CrossRef] [PubMed] [Google Scholar]
  16. Jin Q, Agrawal L, Vanhorn-Ali Z, Alkhatib G. GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1. Virology 2006 ; 353 : 99–110. [CrossRef] [PubMed] [Google Scholar]
  17. Jin Q, Alkhatib B, Cornetta K, Alkhatib G. Alternate receptor usage of neuropilin-1 and glucose transporter protein 1 by the human T cell leukemia virus type 1. Virology 2010 ; 396 : 203–212. [CrossRef] [PubMed] [Google Scholar]
  18. Derse D, Heidecker G, Mitchell M, et al. Infectious transmission and replication of human T-cell leukemia virus type 1. Front Biosci 2004 ; 9 : 2495–2499. [CrossRef] [PubMed] [Google Scholar]
  19. Mazurov D, Ilinskaya A, Heidecker G, et al. Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors. PLoS Pathog 2010 ; 6 : e1000788. [CrossRef] [PubMed] [Google Scholar]
  20. Nejmeddine M, Barnard AL, Tanaka Y, et al. Human T-lymphotropic virus, type 1, Tax protein triggers microtubule reorientation in the virological synapse. J Biol Chem 2005 ; 280 : 29653–29660. [CrossRef] [PubMed] [Google Scholar]
  21. Vincent P, Collette Y, Marignier R, et al. A role for the neuronal protein collapsin response mediator protein 2 in T lymphocyte polarization and migration. J Immunol 2005 ; 175 : 7650–7660. [CrossRef] [PubMed] [Google Scholar]
  22. Kress AK, Kalmer M, Rowan AG, et al. The tumor marker Fascin is strongly induced by the Tax oncoprotein of HTLV-1 through NF-kappaB signals. Blood 2011 ; 117 : 3609–3612. [CrossRef] [PubMed] [Google Scholar]
  23. Chevalier SA, Turpin J, Cachat A, et al. Gem-induced cytoskeleton remodeling increases cellular migration of HTLV-1-infected cells, formation of infected-to-target T-cell conjugates and viral transmission. PLoS Pathog 2014 ; 10 : e1003917. [CrossRef] [PubMed] [Google Scholar]
  24. Kobayashi S, Nakano K, Watanabe E, et al. CADM1 expression and stepwise downregulation of CD7 are closely associated with clonal expansion of HTLV-I-infected cells in adult t-cell leukemia/lymphoma. Clin Cancer Res 2014 ; 20 : 2851–2861. [CrossRef] [PubMed] [Google Scholar]
  25. Masuda M, Maruyama T, Ohta T, et al. CADM1 interacts with Tiam1 and promotes invasive phenotype of human T-cell leukemia virus type I-transformed cells and adult T-cell leukemia cells. J Biol Chem 2010 ; 285 : 15511–15522. [CrossRef] [PubMed] [Google Scholar]
  26. Varrin-Doyer M, Nicolle A, Marignier R, et al. Human T lymphotropic virus type 1 increases T lymphocyte migration by recruiting the cytoskeleton organizer CRMP2. J Immunol 2012 ; 188 : 1222–1233. [CrossRef] [PubMed] [Google Scholar]
  27. Igakura T, Stinchcombe JC, Goon PK, et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 2003 ; 299 : 1713–1716. [CrossRef] [PubMed] [Google Scholar]
  28. Majorovits E, Nejmeddine M, Tanaka Y, et al. Human T-lymphotropic virus-1 visualized at the virological synapse by electron tomography. PloS One 2008 ; 3 : e2251. [CrossRef] [PubMed] [Google Scholar]
  29. Pais-Correia AM, Sachse M, Guadagnini S, et al. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat Med 2010 ; 16 : 83–89. [CrossRef] [PubMed] [Google Scholar]
  30. Nejmeddine M, Negi VS, Mukherjee S, et al. HTLV-1-Tax and ICAM-1 act on T-cell signal pathways to polarize the microtubule-organizing center at the virological synapse. Blood 2009 ; 114 : 1016–1025. [CrossRef] [PubMed] [Google Scholar]
  31. Barnard AL, Igakura T, Tanaka Y, et al. Engagement of specific T-cell surface molecules regulates cytoskeletal polarization in HTLV-1-infected lymphocytes. Blood 2005 ; 106 : 988–995. [CrossRef] [PubMed] [Google Scholar]
  32. Kim SJ, Nair AM, Fernandez S, et al. Enhancement of LFA-1-mediated T cell adhesion by human T lymphotropic virus type 1 p12I1. J Immunol 2006 ; 176 : 5463–5470. [CrossRef] [PubMed] [Google Scholar]
  33. Van Prooyen N, Gold H, Andresen V, et al. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc Natl Acad Sci USA 2010 ; 107 : 20738–20743. [CrossRef] [Google Scholar]
  34. Pique C, Lagaudrière-Gesbert C, Delamarre L, et al. Interaction of CD82 tetraspanin proteins with HTLV-1 envelope glycoproteins inhibits cell-to-cell fusion and virus transmission. Virology 2000 ; 276 : 455–465. [CrossRef] [PubMed] [Google Scholar]
  35. Mazurov D, Heidecker G, Derse D. HTLV-1 Gag protein associates with CD82 tetraspanin microdomains at the plasma membrane. Virology 2006 ; 346 : 194–204. [CrossRef] [PubMed] [Google Scholar]
  36. Mazurov D, Heidecker G, Derse D. The inner loop of tetraspanins CD82 and CD81 mediates interactions with human T cell lymphotrophic virus type 1 Gag protein. J Biol Chem 2007 ; 282 : 3896–3903. [CrossRef] [PubMed] [Google Scholar]
  37. Pais-Correia AM, Sachse M, Guadagnini S, et al. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat Med 2010 ; 16 : 83–89. [CrossRef] [PubMed] [Google Scholar]
  38. Ilinskaya A, Derse D, Hill S, et al. Cell-cell transmission allows human T-lymphotropic virus 1 to circumvent tetherin restriction. Virology 2013 ; 436 : 201–209. [CrossRef] [PubMed] [Google Scholar]
  39. Shinagawa M, Jinno-Oue A, Shimizu N, et al. Human T-cell leukemia viruses are highly unstable over a wide range of temperatures. J Gen Virol 2012 ; 93 : 608–617. [CrossRef] [PubMed] [Google Scholar]
  40. Malbec M, Mouquet H, Schwartz O. Les anticorps anti-VIH-1 et la transmission virale de cellule à cellule. Med Sci (Paris) 2014 ; 30 : 508–510. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Zhong P, Agosto LM, Munro JB, Mothes W. Cell-to-cell transmission of viruses. Curr Opin Virol 2013 ; 3 : 44–50. [CrossRef] [PubMed] [Google Scholar]
  42. Jolly C, Kashefi K, Hollinshead M, Sattentau QJ. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 2004 ; 199 : 283–293. [CrossRef] [PubMed] [Google Scholar]
  43. Sherer NM, Lehmann MJ, Jimenez-Soto LF, et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 2007 ; 9 : 310–315. [CrossRef] [PubMed] [Google Scholar]
  44. Zhong P, Agosto LM, Ilinskaya A, et al. Cell-to-cell transmission can overcome multiple donor and target cell barriers imposed on cell-free HIV. PLoS One 2013 ; 8 : e53138. [CrossRef] [PubMed] [Google Scholar]
  45. Dale BM, McNerney GP, Thompson DL, et al. Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. Cell Host Microbe 2011 ; 10 : 551–562. [CrossRef] [PubMed] [Google Scholar]
  46. Nagai M, Brennan MB, Sakai JA, et al. CD8(+) T cells are an in vivo reservoir for human T-cell lymphotropic virus type I. Blood 2001 ; 98 : 1858–1861. [CrossRef] [PubMed] [Google Scholar]
  47. Koyanagi Y, Itoyama Y, Nakamura N, et al. In vivo infection of human T-cell leukemia virus type I in non-T cells. Virology 1993 ; 196 : 25–33. [CrossRef] [PubMed] [Google Scholar]
  48. Ceccaldi P-EE, Delebecque F, Prevost M-CC, et al. DC-SIGN facilitates fusion of dendritic cells with human T-cell leukemia virus type 1-infected cells. J Virol 2006 ; 80 : 4771–4780. [CrossRef] [PubMed] [Google Scholar]
  49. Zunt JR, Dezzutti CS, Montano SM, et al. Cervical shedding of human T cell lymphotropic virus type I is associated with cervicitis. J Infect Dis 2002 ; 186 : 1669–1672. [CrossRef] [PubMed] [Google Scholar]
  50. Belec L, Jean Georges A, Hallouin MC, et al. Human T-lymphotropic virus type I excretion and specific antibody response in paired saliva and cervicovaginal secretions. AIDS Res Hum Retroviruses 1996 ; 12 : 157–167. [CrossRef] [PubMed] [Google Scholar]
  51. Setoyama M, Mizoguchi S, Eizuru Y. Human T-cell lymphotropic virus type I infects eccrine sweat gland epithelia. Int J Cancer 1999 ; 80 : 652–655. [CrossRef] [PubMed] [Google Scholar]
  52. LeVasseur RJ, Southern SO, Southern PJ. Mammary epithelial cells support and transfer productive human T-cell lymphotropic virus infections. J Hum Virol 1998 ; 1 : 214–223. [PubMed] [Google Scholar]
  53. Lehky TJ, Fox CH, Koenig S, et al. Detection of human T-lymphotropic virus type I (HTLV-I) tax RNA in the central nervous system of HTLV-I-associated myelopathy/tropical spastic paraparesis patients by in situ hybridization. Ann Neurol 1995 ; 37 : 167–175. [CrossRef] [PubMed] [Google Scholar]
  54. Lambert S, Bouttier M, Vassy R, et al. HTLV-1 uses HSPG and neuropilin-1 for entry by molecular mimicry of VEGF165. Blood 2009 ; 113 : 5176–5185. [CrossRef] [PubMed] [Google Scholar]
  55. Ghez D, Lepelletier Y, Lambert S, et al. Neuropilin-1 is involved in human T-cell lymphotropic virus type 1 entry. J Virol 2006 ; 80 : 6844–6854. [CrossRef] [PubMed] [Google Scholar]
  56. Bouchet J, Alcover A. La synapse immunologique. Une plate-forme de signalisation dynamique pour l’activation des lymphocytes T. Med Sci (Paris) 2014 ; 30 : 665–670. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  57. Thoulouze MI, Alcover A. Le « biofilm viral » : un nouveau mode de dissémination des virus ? Med Sci (Paris) 2010 ; 26 : 571–573. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  58. Advedissian T, Deshayes F, Porier F, et al. Les galectines, des lectines pas comme les autres. Med Sci (Paris) 2015 ; 31 : 499–505. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  59. Lebeaux D, Ghigo JM. Infections associées aux biofilms. Quelles perspectives thérapeutiques issues de la recherche fondamentale ? Med Sci (Paris) 2012 ; 28 : 727–739. [CrossRef] [EDP Sciences] [lavoisier] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.