Accès gratuit
Numéro |
Med Sci (Paris)
Volume 31, Numéro 6-7, Juin–Juillet 2015
|
|
---|---|---|
Page(s) | 629 - 637 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20153106016 | |
Publié en ligne | 7 juillet 2015 |
- Gessain A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol 2012 ; 3 : 388. [CrossRef] [PubMed] [Google Scholar]
- Gessain A, Mahieux R. Tropical spastic paraparesis and HTLV-1 associated myelopathy: clinical, epidemiological, virological and therapeutic aspects. Rev Neurol (Paris) 2012 ; 168 : 257–269. [CrossRef] [PubMed] [Google Scholar]
- Pique C, Jones KS. Pathways of cell-cell transmission of HTLV-1. Front Microbiol 2012 ; 3 : 378. [CrossRef] [PubMed] [Google Scholar]
- Cook LB, Melamed A, Niederer H, et al. The role of HTLV-1 clonality, proviral structure, and genomic integration site in adult T-cell leukemia/lymphoma. Blood 2014 ; 123 : 3925–3931. [CrossRef] [PubMed] [Google Scholar]
- Journo C, Mahieux R. HTLV-1 and innate immunity. Viruses 2011 ; 3 : 1374–1394. [CrossRef] [PubMed] [Google Scholar]
- Sze A, Belgnaoui SM, Olagnier D, et al. Host restriction factor SAMHD1 limits human T cell leukemia virus type 1 infection of monocytes via STING-mediated apoptosis. Cell Host Microbe 2013 ; 14 : 422–434. [CrossRef] [PubMed] [Google Scholar]
- Nascimento CR, Lima MA, de Andrada Serpa MJ, et al. Monocytes from HTLV-1-infected patients are unable to fully mature into dendritic cells. Blood 2011 ; 117 : 489–499. [CrossRef] [PubMed] [Google Scholar]
- Jones KS, Cari PS, Huang YK, et al. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4+ T cells. Nat Med 2008 ; 14 : 429–436. [CrossRef] [PubMed] [Google Scholar]
- Jones KS, Lambert S, Bouttier M, et al. Molecular aspects of HTLV-1 entry: functional domains of the HTLV-1 surface subunit (SU) and their relationships to the entry receptors. Viruses 2011 ; 3 : 794–810. [CrossRef] [PubMed] [Google Scholar]
- Takenouchi N, Jones KS, Lisinski I, et al. GLUT1 is not the primary binding receptor but is associated with cell-to-cell transmission of human T-cell leukemia virus type 1. J Virol 2007 ; 81 : 1506–1510. [CrossRef] [PubMed] [Google Scholar]
- Manel N, Battini JL, Sitbon M. Human T cell leukemia virus envelope binding and virus entry are mediated by distinct domains of the glucose transporter GLUT1. J Biol Chem 2005 ; 280 : 29025–29029. [CrossRef] [PubMed] [Google Scholar]
- Cheng W, Fu D, Wei ZF, et al. NRP-1 expression in bladder cancer and its implications for tumor progression. Tumour Biol 2014 ; 35 : 6089–6094. [CrossRef] [PubMed] [Google Scholar]
- Parker MW, Xu P, Guo HF, Vander Kooi CW. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition. PLoS One 2012 ; 7 : e49177. [CrossRef] [PubMed] [Google Scholar]
- Ellis LM. The role of neuropilins in cancer. Mol Cancer Ther 2006 ; 5 : 1099–1107. [CrossRef] [PubMed] [Google Scholar]
- Jain P, Manuel SL, Khan ZK, et al. DC-SIGN mediates cell-free infection and transmission of human T-cell lymphotropic virus type 1 by dendritic cells. J Virol 2009 ; 83 : 10908–10921. [CrossRef] [PubMed] [Google Scholar]
- Jin Q, Agrawal L, Vanhorn-Ali Z, Alkhatib G. GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1. Virology 2006 ; 353 : 99–110. [CrossRef] [PubMed] [Google Scholar]
- Jin Q, Alkhatib B, Cornetta K, Alkhatib G. Alternate receptor usage of neuropilin-1 and glucose transporter protein 1 by the human T cell leukemia virus type 1. Virology 2010 ; 396 : 203–212. [CrossRef] [PubMed] [Google Scholar]
- Derse D, Heidecker G, Mitchell M, et al. Infectious transmission and replication of human T-cell leukemia virus type 1. Front Biosci 2004 ; 9 : 2495–2499. [CrossRef] [PubMed] [Google Scholar]
- Mazurov D, Ilinskaya A, Heidecker G, et al. Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors. PLoS Pathog 2010 ; 6 : e1000788. [CrossRef] [PubMed] [Google Scholar]
- Nejmeddine M, Barnard AL, Tanaka Y, et al. Human T-lymphotropic virus, type 1, Tax protein triggers microtubule reorientation in the virological synapse. J Biol Chem 2005 ; 280 : 29653–29660. [CrossRef] [PubMed] [Google Scholar]
- Vincent P, Collette Y, Marignier R, et al. A role for the neuronal protein collapsin response mediator protein 2 in T lymphocyte polarization and migration. J Immunol 2005 ; 175 : 7650–7660. [CrossRef] [PubMed] [Google Scholar]
- Kress AK, Kalmer M, Rowan AG, et al. The tumor marker Fascin is strongly induced by the Tax oncoprotein of HTLV-1 through NF-kappaB signals. Blood 2011 ; 117 : 3609–3612. [CrossRef] [PubMed] [Google Scholar]
- Chevalier SA, Turpin J, Cachat A, et al. Gem-induced cytoskeleton remodeling increases cellular migration of HTLV-1-infected cells, formation of infected-to-target T-cell conjugates and viral transmission. PLoS Pathog 2014 ; 10 : e1003917. [CrossRef] [PubMed] [Google Scholar]
- Kobayashi S, Nakano K, Watanabe E, et al. CADM1 expression and stepwise downregulation of CD7 are closely associated with clonal expansion of HTLV-I-infected cells in adult t-cell leukemia/lymphoma. Clin Cancer Res 2014 ; 20 : 2851–2861. [CrossRef] [PubMed] [Google Scholar]
- Masuda M, Maruyama T, Ohta T, et al. CADM1 interacts with Tiam1 and promotes invasive phenotype of human T-cell leukemia virus type I-transformed cells and adult T-cell leukemia cells. J Biol Chem 2010 ; 285 : 15511–15522. [CrossRef] [PubMed] [Google Scholar]
- Varrin-Doyer M, Nicolle A, Marignier R, et al. Human T lymphotropic virus type 1 increases T lymphocyte migration by recruiting the cytoskeleton organizer CRMP2. J Immunol 2012 ; 188 : 1222–1233. [CrossRef] [PubMed] [Google Scholar]
- Igakura T, Stinchcombe JC, Goon PK, et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 2003 ; 299 : 1713–1716. [CrossRef] [PubMed] [Google Scholar]
- Majorovits E, Nejmeddine M, Tanaka Y, et al. Human T-lymphotropic virus-1 visualized at the virological synapse by electron tomography. PloS One 2008 ; 3 : e2251. [CrossRef] [PubMed] [Google Scholar]
- Pais-Correia AM, Sachse M, Guadagnini S, et al. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat Med 2010 ; 16 : 83–89. [CrossRef] [PubMed] [Google Scholar]
- Nejmeddine M, Negi VS, Mukherjee S, et al. HTLV-1-Tax and ICAM-1 act on T-cell signal pathways to polarize the microtubule-organizing center at the virological synapse. Blood 2009 ; 114 : 1016–1025. [CrossRef] [PubMed] [Google Scholar]
- Barnard AL, Igakura T, Tanaka Y, et al. Engagement of specific T-cell surface molecules regulates cytoskeletal polarization in HTLV-1-infected lymphocytes. Blood 2005 ; 106 : 988–995. [CrossRef] [PubMed] [Google Scholar]
- Kim SJ, Nair AM, Fernandez S, et al. Enhancement of LFA-1-mediated T cell adhesion by human T lymphotropic virus type 1 p12I1. J Immunol 2006 ; 176 : 5463–5470. [CrossRef] [PubMed] [Google Scholar]
- Van Prooyen N, Gold H, Andresen V, et al. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc Natl Acad Sci USA 2010 ; 107 : 20738–20743. [CrossRef] [Google Scholar]
- Pique C, Lagaudrière-Gesbert C, Delamarre L, et al. Interaction of CD82 tetraspanin proteins with HTLV-1 envelope glycoproteins inhibits cell-to-cell fusion and virus transmission. Virology 2000 ; 276 : 455–465. [CrossRef] [PubMed] [Google Scholar]
- Mazurov D, Heidecker G, Derse D. HTLV-1 Gag protein associates with CD82 tetraspanin microdomains at the plasma membrane. Virology 2006 ; 346 : 194–204. [CrossRef] [PubMed] [Google Scholar]
- Mazurov D, Heidecker G, Derse D. The inner loop of tetraspanins CD82 and CD81 mediates interactions with human T cell lymphotrophic virus type 1 Gag protein. J Biol Chem 2007 ; 282 : 3896–3903. [CrossRef] [PubMed] [Google Scholar]
- Pais-Correia AM, Sachse M, Guadagnini S, et al. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat Med 2010 ; 16 : 83–89. [CrossRef] [PubMed] [Google Scholar]
- Ilinskaya A, Derse D, Hill S, et al. Cell-cell transmission allows human T-lymphotropic virus 1 to circumvent tetherin restriction. Virology 2013 ; 436 : 201–209. [CrossRef] [PubMed] [Google Scholar]
- Shinagawa M, Jinno-Oue A, Shimizu N, et al. Human T-cell leukemia viruses are highly unstable over a wide range of temperatures. J Gen Virol 2012 ; 93 : 608–617. [CrossRef] [PubMed] [Google Scholar]
- Malbec M, Mouquet H, Schwartz O. Les anticorps anti-VIH-1 et la transmission virale de cellule à cellule. Med Sci (Paris) 2014 ; 30 : 508–510. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Zhong P, Agosto LM, Munro JB, Mothes W. Cell-to-cell transmission of viruses. Curr Opin Virol 2013 ; 3 : 44–50. [CrossRef] [PubMed] [Google Scholar]
- Jolly C, Kashefi K, Hollinshead M, Sattentau QJ. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 2004 ; 199 : 283–293. [CrossRef] [PubMed] [Google Scholar]
- Sherer NM, Lehmann MJ, Jimenez-Soto LF, et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 2007 ; 9 : 310–315. [CrossRef] [PubMed] [Google Scholar]
- Zhong P, Agosto LM, Ilinskaya A, et al. Cell-to-cell transmission can overcome multiple donor and target cell barriers imposed on cell-free HIV. PLoS One 2013 ; 8 : e53138. [CrossRef] [PubMed] [Google Scholar]
- Dale BM, McNerney GP, Thompson DL, et al. Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. Cell Host Microbe 2011 ; 10 : 551–562. [CrossRef] [PubMed] [Google Scholar]
- Nagai M, Brennan MB, Sakai JA, et al. CD8(+) T cells are an in vivo reservoir for human T-cell lymphotropic virus type I. Blood 2001 ; 98 : 1858–1861. [CrossRef] [PubMed] [Google Scholar]
- Koyanagi Y, Itoyama Y, Nakamura N, et al. In vivo infection of human T-cell leukemia virus type I in non-T cells. Virology 1993 ; 196 : 25–33. [CrossRef] [PubMed] [Google Scholar]
- Ceccaldi P-EE, Delebecque F, Prevost M-CC, et al. DC-SIGN facilitates fusion of dendritic cells with human T-cell leukemia virus type 1-infected cells. J Virol 2006 ; 80 : 4771–4780. [CrossRef] [PubMed] [Google Scholar]
- Zunt JR, Dezzutti CS, Montano SM, et al. Cervical shedding of human T cell lymphotropic virus type I is associated with cervicitis. J Infect Dis 2002 ; 186 : 1669–1672. [CrossRef] [PubMed] [Google Scholar]
- Belec L, Jean Georges A, Hallouin MC, et al. Human T-lymphotropic virus type I excretion and specific antibody response in paired saliva and cervicovaginal secretions. AIDS Res Hum Retroviruses 1996 ; 12 : 157–167. [CrossRef] [PubMed] [Google Scholar]
- Setoyama M, Mizoguchi S, Eizuru Y. Human T-cell lymphotropic virus type I infects eccrine sweat gland epithelia. Int J Cancer 1999 ; 80 : 652–655. [CrossRef] [PubMed] [Google Scholar]
- LeVasseur RJ, Southern SO, Southern PJ. Mammary epithelial cells support and transfer productive human T-cell lymphotropic virus infections. J Hum Virol 1998 ; 1 : 214–223. [PubMed] [Google Scholar]
- Lehky TJ, Fox CH, Koenig S, et al. Detection of human T-lymphotropic virus type I (HTLV-I) tax RNA in the central nervous system of HTLV-I-associated myelopathy/tropical spastic paraparesis patients by in situ hybridization. Ann Neurol 1995 ; 37 : 167–175. [CrossRef] [PubMed] [Google Scholar]
- Lambert S, Bouttier M, Vassy R, et al. HTLV-1 uses HSPG and neuropilin-1 for entry by molecular mimicry of VEGF165. Blood 2009 ; 113 : 5176–5185. [CrossRef] [PubMed] [Google Scholar]
- Ghez D, Lepelletier Y, Lambert S, et al. Neuropilin-1 is involved in human T-cell lymphotropic virus type 1 entry. J Virol 2006 ; 80 : 6844–6854. [CrossRef] [PubMed] [Google Scholar]
- Bouchet J, Alcover A. La synapse immunologique. Une plate-forme de signalisation dynamique pour l’activation des lymphocytes T. Med Sci (Paris) 2014 ; 30 : 665–670. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Thoulouze MI, Alcover A. Le « biofilm viral » : un nouveau mode de dissémination des virus ? Med Sci (Paris) 2010 ; 26 : 571–573. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Advedissian T, Deshayes F, Porier F, et al. Les galectines, des lectines pas comme les autres. Med Sci (Paris) 2015 ; 31 : 499–505. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lebeaux D, Ghigo JM. Infections associées aux biofilms. Quelles perspectives thérapeutiques issues de la recherche fondamentale ? Med Sci (Paris) 2012 ; 28 : 727–739. [CrossRef] [EDP Sciences] [lavoisier] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.