Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 6-7, Juin–Juillet 2015
Page(s) 638 - 646
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153106017
Publié en ligne 7 juillet 2015
  1. López Hernández Y, Yero D, Pinos-Rodríguez JM, et al. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens. Front Microbiol 2015 ; 6 : 38. [CrossRef] [PubMed] [Google Scholar]
  2. Lemaitre B, Reichhart JM, Hoffmann JA. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 1997 ; 94 : 14614–14619. [CrossRef] [Google Scholar]
  3. Sprynski N, Valade E, Neulat-Ripoll F. Galleria mellonella as an infection model for select agents. Methods Mol Biol 2014 ; 1197 : 3–9. [CrossRef] [PubMed] [Google Scholar]
  4. Tan MW, Mahajan-Miklos S, Ausubel FM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 1999 ; 96 : 715–720. [CrossRef] [Google Scholar]
  5. Abnave P, Mottola G, Gimenez G, et al. Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe 2014 ; 16 : 338–350. [CrossRef] [PubMed] [Google Scholar]
  6. Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 1981 ; 291 : 293–296. [CrossRef] [PubMed] [Google Scholar]
  7. Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013 ; 496 : 498–503. [CrossRef] [PubMed] [Google Scholar]
  8. Levraud JP, Boudinot P. Arche de Noé immunologique - Le système immunitaire des poissons téléostéens. Med Sci (Paris) 2009 ; 25 : 405–411. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Vaart M van der, Spaink HP, Meijer AH. Pathogen recognition and activation of the innate immune response in zebrafish. Adv Hematol 2012 ; 2012 : 159807. [PubMed] [Google Scholar]
  10. Lam SH, Chua HL, Gong Z, et al. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 2004 ; 28 : 9–28. [CrossRef] [PubMed] [Google Scholar]
  11. Clay H, Davis JM, Beery D, et al. Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2007 ; 2 : 29–39. [CrossRef] [PubMed] [Google Scholar]
  12. Bernut A, Herrmann J-L, Kissa K, et al. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc Natl Acad Sci USA 2014 ; 111 : E943–E952. [CrossRef] [Google Scholar]
  13. Renshaw SA, Loynes CA, Trushell DMI, et al. A transgenic zebrafish model of neutrophilic inflammation. Blood 2006 ; 108 : 3976–3978. [CrossRef] [PubMed] [Google Scholar]
  14. Rowe HM, Withey JH, Neely MN. Zebrafish as a model for zoonotic aquatic pathogens. Dev Comp Immunol 2014 ; 46 : 96–107. [CrossRef] [PubMed] [Google Scholar]
  15. Benard EL, Sar AM van der, Ellett F, et al. Infection of zebrafish embryos with intracellular bacterial pathogens. J Vis Exp 2012 ; 61 : e3781. doi: 10.3791/3781. [Google Scholar]
  16. Torraca V, Masud S, Spaink HP, et al. Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis Model Mech 2014 ; 7 : 785–797. [CrossRef] [PubMed] [Google Scholar]
  17. Ramakrishnan L. Looking within the zebrafish to understand the tuberculous granuloma. Adv Exp Med Biol 2013 ; 783 : 251–266. [CrossRef] [PubMed] [Google Scholar]
  18. Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 2009 ; 136 : 37–49. [CrossRef] [PubMed] [Google Scholar]
  19. Bernut A, Moigne V Le, Lesne T, et al. In vivo assessment of drug efficacy against Mycobacterium abscessus using the embryonic zebrafish test system. Antimicrob Agents Chemother 2014 ; 58 : 4054–4063. [CrossRef] [PubMed] [Google Scholar]
  20. Bernut A, Herrmann JL, Lutfalla G, et al. Les cordes mycobactériennes - Un nouveau moyen d’échappement au système immunitaire ? Med Sci (Paris) 2014 ; 30 : 499–502. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  21. Mostowy S, Boucontet L, Mazon Moya MJ, et al. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog 2013 ; 9 : e1003588. [CrossRef] [PubMed] [Google Scholar]
  22. Lamoth F, Bochud PY. Aspergillose invasive : perspectives en infectiologie préventive. Med Sci (Paris) 2009 ; 25 : 669–672. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Knox BP, Deng Q, Rood M, et al. Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae. Eukaryotic Cell 2014 ; 13 : 1266–1277. [CrossRef] [PubMed] [Google Scholar]
  24. Palha N, Guivel-Benhassine F, Briolat V, et al. Real-time whole-body visualization of chikungunya virus infection and host interferon response in zebrafish. PLoS Pathog 2013 ; 9 : e1003619. [CrossRef] [PubMed] [Google Scholar]
  25. Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 2005 ; 4 : 35–44. [CrossRef] [PubMed] [Google Scholar]
  26. Adams KN, Takaki K, Connolly LE, et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 2011 ; 145 : 39–53. [CrossRef] [PubMed] [Google Scholar]
  27. Makarov V, Lechartier B, Zhang M, et al. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol Med 2014 ; 6 : 372–383. [CrossRef] [PubMed] [Google Scholar]
  28. Spaink HP, Cui C, Wiweger MI, et al. Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods 2013 ; 62 : 246–254. [CrossRef] [PubMed] [Google Scholar]
  29. Van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, et al. A star with stripes: zebrafish as an infection model. Trends Microbiol 2004 ; 12 : 451–457. [CrossRef] [PubMed] [Google Scholar]
  30. Vergunst AC, Meijer AH, Renshaw SA, et al. Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infect Immun 2010 ; 78 : 1495–1508. [CrossRef] [PubMed] [Google Scholar]
  31. Clatworthy AE, Lee JSW, Leibman M, et al. Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect Immun 2009 ; 77 : 1293–1303. [CrossRef] [PubMed] [Google Scholar]
  32. Paranjpye RN, Myers MS, Yount EC, et al. Zebrafish as a model for Vibrio parahaemolyticus virulence. Microbiology 2013 ; 159 : 2605–2615. [CrossRef] [PubMed] [Google Scholar]
  33. Davis JM, Haake DA, Ramakrishnan L. Leptospira interrogans stably infects zebrafish embryos, altering phagocyte behavior and homing to specific tissues. PLoS Negl Trop Dis 2009 ; 3 : e463. [CrossRef] [PubMed] [Google Scholar]
  34. Levraud JP, Disson O, Kissa K, et al. Real-time observation of Listeria monocytogenes-phagocyte interactions in living zebrafish larvae. Infect Immun 2009 ; 77 : 3651–3660. [CrossRef] [PubMed] [Google Scholar]
  35. Prajsnar TK, Cunliffe VT, Foster SJ, et al. A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cell Microbiol 2008 ; 10 : 2312–2325. [CrossRef] [PubMed] [Google Scholar]
  36. Rounioja S, Saralahti A, Rantala L, et al. Defense of zebrafish embryos against Streptococcus pneumoniae infection is dependent on the phagocytic activity of leukocytes. Dev Comp Immunol 2012 ; 36 : 342–348. [CrossRef] [PubMed] [Google Scholar]
  37. Patterson H, Saralahti A, Parikka M, et al. Adult zebrafish model of bacterial meningitis in Streptococcus agalactiae infection. Dev Comp Immunol 2012 ; 38 : 447–455. [CrossRef] [PubMed] [Google Scholar]
  38. Prajsnar TK, Renshaw SA, Ogryzko NV, et al. Zebrafish as a novel vertebrate model to dissect enterococcal pathogenesis. Infect Immun 2013 ; 81 : 4271–4279. [CrossRef] [PubMed] [Google Scholar]
  39. Davis JM, Clay H, Lewis JL, et al. Real-time visualization of Mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 2002 ; 17 : 693–702. [CrossRef] [PubMed] [Google Scholar]
  40. Chao CC, Hsu PC, Jen CF, et al. Zebrafish as a model host for Candida albicans infection. Infect Immun 2010 ; 78 : 2512–2521. [CrossRef] [PubMed] [Google Scholar]
  41. Burgos JS, Ripoll-Gomez J, Alfaro JM, et al. Zebrafish as a new model for herpes simplex virus type 1 infection. Zebrafish 2008 ; 5 : 323–333. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.