Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 6-7, Juin–Juillet 2015
Page(s) 622 - 628
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153106015
Publié en ligne 7 juillet 2015
  1. Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013 ; 195 : 643–681. [CrossRef] [PubMed]
  2. Ben-Shem A, Garreau de Loubresse N, Melnikov S, et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 2011 ; 334 : 1524–1529. [CrossRef] [PubMed]
  3. Anger AM, Armache JP, Berninghausen O, et al. Structures of the human and Drosophila 80S ribosome. Nature 2013 ; 497 : 80–85. [CrossRef] [PubMed]
  4. Mullineux ST, Lafontaine DLJ. Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand? Biochimie 2012 ; 94 : 1521–1532. [CrossRef] [PubMed]
  5. Tafforeau L, Zorbas C, Langhendries JL, et al. The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of pre-rRNA processing factors. Mol Cell 2013 ; 51 : 539–551. [CrossRef] [PubMed]
  6. Henras AK, Plisson-Chastang C, O’Donohue MF, et al. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA 2014 ; doi : 10.1002/wrna.1269.
  7. Thiry M, Lafontaine DLJ. Birth of a nucleolus: the evolution of nucleolar compartments. Trends Cell Biol 2005 ; 15 : 194–199. [CrossRef] [PubMed]
  8. Huh W-K, Falvo JV, Gerke LC, et al. Global analysis of protein localization in budding yeast. Nature 2003 ; 425 : 686–691. [CrossRef] [PubMed]
  9. Ahmad Y, Boisvert FM, Gregor P, et al. NOPdb: Nucleolar proteome database - 2008 update. Nucleic Acids Res 2009 ; 37 : D181–D184. [CrossRef] [PubMed]
  10. Ruggero D. Translational control in cancer etiology. Cold Spring Harb Perspect Biol 2013 ; 5 : a012336. [CrossRef]
  11. Marcel V, Catez F, Mertani HC, et al. Le ribosome. Med Sci (Paris) 2014 ; 30 : 21–24. [CrossRef] [EDP Sciences]
  12. Marcel V, Ghayad SE, Belin S, et al. p53 Acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 2013 ; 24 : 318–330. [CrossRef] [PubMed]
  13. Bellodi C, McMahon M, Contreras A, et al. H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation. Cell Rep 2013 ; 3 : 1493–1502. [CrossRef] [PubMed]
  14. Leporé N, Lafontaine DLJ. « Attrape-moi si tu peux » - Surveillance de l’intégrité structurale et fonctionnelle des ARN cellulaires eucaryotes. Med Sci (Paris) 2010 ; 26 : 259–266. [CrossRef] [EDP Sciences] [PubMed]
  15. Ciganda M, Williams N. Eukaryotic 5S rRNA biogenesis. Wiley Interdiscip Rev RNA 2011 ; 2 : 523–533. [CrossRef] [PubMed]
  16. Carron C, O’Donohue MF, Choesmel V, et al. Analysis of two human pre-ribosomal factors, bystin and hTsr1, highlights differences in evolution of ribosome biogenesis between yeast and mammals. Nucleic Acids Res 2011 ; 39 : 280–291. [CrossRef] [PubMed]
  17. Sloan KE, Mattijssen S, Lebaron S, et al. Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing. J Cell Biol 2013 ; 200 : 577–588. [CrossRef] [PubMed]
  18. Preti M, O’Donohue MF, Montel-Lehry N, et al. Gradual processing of the ITS1 from the nucleolus to the cytoplasm during synthesis of the human 18S rRNA. Nucleic Acids Res 2013 ; 41 : 4709–4723. [CrossRef] [PubMed]
  19. Decatur WA, Fournier MJ. rRNA modifications and ribosome function. Trends Biochem Sci 2002 ; 27 : 344–351. [CrossRef] [PubMed]
  20. Watkins NJ, Bohnsack MT. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA 2011 ; 3 : 397–414. [CrossRef] [PubMed]
  21. Ban N, Beckmann R, Cate JH, et al. A new system for naming ribosomal proteins. Curr Opin Struct Biol 2014 ; 24 : 165–169. [CrossRef] [PubMed]
  22. Ferreira-Cerca S, Pöll G, Gleizes PE, et al. Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol Cell 2005 ; 20 : 263–275. [CrossRef] [PubMed]
  23. Léger-Silvestre I, Milkereit P, Ferreira-Cerca S, et al. The ribosomal protein Rps15p is required for nuclear exit of the 40S subunit precursors in yeast. EMBO J 2004 ; 23 : 2336–2347. [CrossRef] [PubMed]
  24. Trotta CR, Lund E, Kahan L, et al. Coordinated nuclear export of 60S ribosomal subunits and NMD3 in vertebrates. EMBO J 2003 ; 22 : 2841–2851. [CrossRef] [PubMed]
  25. Zemp I, Wild T, O’Donohue MF, et al. Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J Cell Biol 2009 ; 185 : 1167–1180. [CrossRef] [PubMed]
  26. Yao W, Roser D, Köhler A, et al. Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67-Mtr2. Mol Cell 2007 ; 26 : 51–62. [CrossRef] [PubMed]
  27. Karbstein K. Quality control mechanisms during ribosome maturation. Trends Cell Biol 2013 ; 23 : 242–250. [CrossRef] [PubMed]
  28. Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood 2010 ; 115 : 3196–3205. [CrossRef] [PubMed]
  29. Ruggero D, Grisendi S, Piazza F, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 2003 ; 299 : 259–262. [CrossRef] [PubMed]
  30. Choesmel V, Bacqueville D, Rouquette J, et al. Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 2007 ; 109 : 1275–1283. [CrossRef] [PubMed]
  31. Aguissa-Touré AH, Da Costa L, Leblanc T, et al. Anémie de Diamond-Blackfan. Med Sci (Paris) 2009 ; 25 : 69–76. [CrossRef] [EDP Sciences] [PubMed]
  32. Johnson AW, Ellis SR. Of blood, bones, and ribosomes: is Swachman-Diamond syndrome a ribosomopathy? Genes Dev 2011 ; 25 : 898–900. [CrossRef] [PubMed]
  33. Kevin Macé K, Giudice E, Gillet R. La synthèse des protéines par le ribosome. Un chemin semé d’embûches. Med Sci (Paris) 2015 ; 31 : 282–290. [CrossRef] [EDP Sciences] [PubMed]
  34. Hoareau-Aveilla C, Henry Y. Leblanc TLa dyskératose congénitale. Une maladie méconnue due à un maintien défectueux des télomères. Med Sci (Paris) 2008 ; 24 : 390–398. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.