Free Access
Med Sci (Paris)
Volume 31, Number 3, Mars 2015
Page(s) 312 - 319
Section M/S Revues
Published online 08 April 2015
  1. Lipinski C, Lombardo F, Dominy B, Feeney P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001 ; 46 : 3–26. [CrossRef] [PubMed] [Google Scholar]
  2. Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002 ; 45 : 2615–2623. [CrossRef] [PubMed] [Google Scholar]
  3. Oprea TI. Property distribution of drug-related chemical databases. J Comput Aided Mol Des 2000 ; 14 : 251–264. [CrossRef] [PubMed] [Google Scholar]
  4. Walters WP, Murcko MA. Prediction of drug-likeness. Adv Drug Deliv Rev 2002 ; 54 : 255–271. [CrossRef] [PubMed] [Google Scholar]
  5. Rishton GM. Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov Today 2003 ; 8 : 86–96. [CrossRef] [PubMed] [Google Scholar]
  6. Hughes JD, Blagg J, Price DA, et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 2008 ; 18 : 4872–4875. [CrossRef] [PubMed] [Google Scholar]
  7. Bickerton GR, Paolini GV, Besnard J, et al. Quantifying the chemical beauty of drugs. Nat Chem 2012 ; 4 : 90–98. [CrossRef] [PubMed] [Google Scholar]
  8. Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 2010 ; 53 : 2719–2740. [CrossRef] [PubMed] [Google Scholar]
  9. Gupta S. New drug development. In : Drug discovery and clinical research. Delhi, India : JayPee Brothers Medical Publishers Ltd, 2011 : 1–135. [Google Scholar]
  10. Sheppard DW, Lipkin MJ, Harris CJ, et al. Strategies for small molecule library design. Curr Pharm Des 2013 ; 19 : 1–9. [Google Scholar]
  11. Lipkin MJ, Stevens AP, Livingstone DJ, Harris CJ. How large does a compound screening collection need to be? Comb Chem High Throughput Screen 2008 ; 11 : 482–493. [CrossRef] [PubMed] [Google Scholar]
  12. Pirhadi S, Shiri F, Ghasemi JB. Methods and applications of structure based pharmacophores in drug discovery. Curr Top Med Chem 2013 ; 13 : 1036–1047. [CrossRef] [PubMed] [Google Scholar]
  13. AbdulHameed MD, Chaudhury S, Singh N, et al. Exploring polypharmacology using a ROCS-based target fishing approach. J Chem Inf Model 2012 ; 52 : 492–505. [CrossRef] [PubMed] [Google Scholar]
  14. Cheng T, Li Q, Zhou Z, et al. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 2012 ; 14 : 133–141. [CrossRef] [PubMed] [Google Scholar]
  15. Ripphausen P, Nisius B, Bajorath J. State-of-the-art in ligand-based virtual screening. Drug Discov Today 2011 ; 16 : 372–376. [CrossRef] [PubMed] [Google Scholar]
  16. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there?. Nat Rev Drug Discov 2006 ; 5 : 993–996. [Google Scholar]
  17. Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 2011 ; 10 : 579–590. [CrossRef] [PubMed] [Google Scholar]
  18. Venkatesan K, Rual J, Vazquez A, et al. An empirical framework for binary interactome mapping. Nat Methods 2009 ; 6 : 83–90. [CrossRef] [PubMed] [Google Scholar]
  19. Stumpf M, Thorne T, de Silva E, et al. Estimating the size of the human interactome. Proc Natl Acad Sci USA 2008 ; 105 : 6959–6964. [CrossRef] [Google Scholar]
  20. Mullard A. Protein-protein interaction inhibitors get into the groove. Nat Rev Drug Discov 2012 ; 11 : 173–175. [CrossRef] [PubMed] [Google Scholar]
  21. Labbé CM, Laconde G, Kuenemann MA, et al. iPPI-DB: a manually curated and interactive database of small non-peptide inhibitors of protein-protein interactions. Drug Discov Today 2013 ; 18 : 958–968. [CrossRef] [PubMed] [Google Scholar]
  22. Higueruelo AP, Jubb H, Blundell TL. TIMBAL v2: update of a database holding small molecules modulating protein-protein interactions. Database (Oxford) 2013; 2013 : bat039. [CrossRef] [PubMed] [Google Scholar]
  23. Higueruelo AP, Schreyer A, Bickerton GRJ, et al. Atomic interactions and profile of small molecules disrupting protein-protein interfaces: the TIMBAL database. Chem Biol Drug Design 2009 ; 74 : 457–467. [CrossRef] [Google Scholar]
  24. Basse MJ, Betzi S, Bourgeas R, et al. 2P2Idb: a structural database dedicated to orthosteric modulation of protein-protein interactions. Nucleic Acids Res 2013 ; 41 : D824–D827. [CrossRef] [PubMed] [Google Scholar]
  25. Bourgeas R, Basse MJ, Morelli X, Roche P. Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database. PLoS One 2010 ; 5 : e9598. [CrossRef] [PubMed] [Google Scholar]
  26. Hamon V, Morelli X. Druggability of protein-protein interactions. In: Understanding and exploiting protein-protein interactions as drug target. Future Science Ltd, 2013 : 18–31. [Google Scholar]
  27. Pérot S, Regad L, Reynès C, et al. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction. PLoS One 2013 ; 8 : e63730. [CrossRef] [PubMed] [Google Scholar]
  28. Pagliaro L, Felding J, Audouze K, et al. Emerging classes of protein-protein interaction inhibitors and new tools for their development. Curr Opin Chem Biol 2004 ; 8 : 442–449. [CrossRef] [PubMed] [Google Scholar]
  29. Reynes C, Host H, Camproux AC, et al. Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods. PLoS Comput Biol 2010 ; 6 : e1000695. [CrossRef] [PubMed] [Google Scholar]
  30. Sperandio O, Reynès C, Camproux A, Villoutreix B. Rationalizing the chemical space of protein-protein interaction inhibitors. Drug Discov Today 2010 ; 15 : 220–229. [CrossRef] [PubMed] [Google Scholar]
  31. Morelli X, Bourgeas R, Roche P. Chemical and structural lessons from recent successes in protein-protein interaction inhibition (2P2I). Curr Opin Chem Biol 2011 ; 15 : 475–481. [CrossRef] [PubMed] [Google Scholar]
  32. Akram ON, Degraff DJ, Sheehan JH, et al. Tailoring peptidomimetics for targeting protein-protein interactions. Mol Cancer Res 2014 ; 12 : 967–978. [CrossRef] [PubMed] [Google Scholar]
  33. Jayatunga MK, Thompson S, Hamilton AD. α-Helix mimetics: outwards and upwards. Bioorg Med Chem Lett 2014 ; 24 : 717–724. [CrossRef] [PubMed] [Google Scholar]
  34. Isvoran A, Craciun D, Martiny V, et al. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding. BMC Pharmacol Toxicol 2013 ; 14 : 31. [CrossRef] [PubMed] [Google Scholar]
  35. Villoutreix BO, Labbé CM, Lagorce D, et al. A leap into the chemical space of protein-protein interaction inhibitors. Curr Pharm Des 2012 ; 18 : 4648–4667. [CrossRef] [PubMed] [Google Scholar]
  36. Neugebauer A, Hartmann RW, Klein CD. Prediction of protein-protein interaction inhibitors by chemoinformatics and machine learning methods. J Med Chem 2007 ; 50 : 4665–4668. [CrossRef] [PubMed] [Google Scholar]
  37. Hamon V, Bourgeas R, Ducrot P, et al. 2P2I HUNTER: a tool for filtering orthosteric protein-protein interaction modulators via a dedicated support vector machine. J R Soc Interface 2014 ; 11 : 20130860. [CrossRef] [PubMed] [Google Scholar]
  38. Lagorce D, Sperandio O, Galons H, et al. FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics 2008 ; 9 : 396. [CrossRef] [PubMed] [Google Scholar]
  39. Lagorce D, Maupetit J, Baell J, et al. The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics 2011 ; 27 : 2018–2020. [CrossRef] [PubMed] [Google Scholar]
  40. Hamon V, Brunel JM, Combes S, et al. 2P2Ichem: focused chemical libraries dedicated to orthosteric modulation of protein-protein interactions. Med Chem Comm 2013 ; 4 : 797–809. [CrossRef] [Google Scholar]
  41. Fry DC, So SS. Modulators of protein-protein interactions: importance of three-dimensionality. In: Protein-protein interactions in drug discovery. Wiley-VCH Verlag GmbH and Co KGaA, 2013 : 55–62. [Google Scholar]
  42. Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 2009 ; 52 : 6752–6756. [CrossRef] [PubMed] [Google Scholar]
  43. Rognan D, Bonnet P. Les chimiothèques et le criblage virtuel. Med Sci (Paris) 2014 ; 30 : 1152–1160. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. le Krimm I. criblage de fragments : une voie prometteuse pour la conception de médicaments. Med Sci (Paris) 2015 ; 31 : 197–202. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Wong YS. Synthèse orientée vers la diversité structurale pour explorer le vivant. Med Sci (Paris) 2015 ; 31 : 93–97. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Kuenemann MA, Bourbon LM, Labbé CM, et al. Which three-dimensional characteristics make efficient inhibitors of protein-protein interactions?. J Chem Inf Model 2014 ; 54 : 3067–3079. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.