Free Access
Med Sci (Paris)
Volume 31, Number 3, Mars 2015
Page(s) 304 - 311
Section M/S Revues
Published online 08 April 2015
  1. Cremer T, Cremer M. Chromosome territories. Cold Spring Harb Perspect Biol 2010 ; 2 : a003889. [CrossRef] [PubMed] [Google Scholar]
  2. Lanctot C, Cheutin T, Cremer M et al. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 2007 ; 8 : 104–115. [CrossRef] [PubMed] [Google Scholar]
  3. Dundr M. Nuclear bodies: multifunctional companions of the genome. Curr Opin Cell Biol 2012 ; 24 : 415–422. [CrossRef] [PubMed] [Google Scholar]
  4. Iborra FJ, Pombo A, Jackson DA, Cook PR. Active RNA polymerases are localized within discrete transcription factories in human nuclei. J Cell Sci 1996 ; 109 : 1427–1436. [PubMed] [Google Scholar]
  5. Osborne CS, Chakalova L, Brown KE et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 2004 ; 36 : 1065–1071. [CrossRef] [PubMed] [Google Scholar]
  6. Schoenfelder S, Sexton T, Chakalova L et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 2010 ; 42 : 53–61. [CrossRef] [PubMed] [Google Scholar]
  7. Darzacq X, Yao J, Larson DR et al. Imaging transcription in living cells. Annu Rev Biophys 2009 ; 38 : 173–196. [CrossRef] [PubMed] [Google Scholar]
  8. Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 2012 ; 13 : 840–852. [CrossRef] [PubMed] [Google Scholar]
  9. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science 2002 ; 295 : 1306–1311. [CrossRef] [PubMed] [Google Scholar]
  10. Hagege H, Klous P, Braem C et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2007 ; 2 : 1722–1733. [CrossRef] [PubMed] [Google Scholar]
  11. Dekker J. The three Cs of chromosome conformation capture: controls, controls, controls. Nat Methods 2006 ; 3 : 17–21. [CrossRef] [PubMed] [Google Scholar]
  12. Tolhuis B, Palstra RJ, Splinter E et al. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 2002 ; 10 : 1453–1465. [CrossRef] [PubMed] [Google Scholar]
  13. Spilianakis CG, Lalioti MD, Town T et al. Interchromosomal associations between alternatively expressed loci. Nature 2005 ; 435 : 637–645. [CrossRef] [PubMed] [Google Scholar]
  14. Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 2013 ; 14 : 390–403. [CrossRef] [PubMed] [Google Scholar]
  15. Simonis M, Klous P, Splinter E et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 2006 ; 38 : 1348–1354. [CrossRef] [PubMed] [Google Scholar]
  16. Zhao Z, Tavoosidana G, Sjolinder M et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 2006 ; 38 : 1341–1347. [CrossRef] [PubMed] [Google Scholar]
  17. Sexton T, Kurukuti S, Mitchell JA et al. Sensitive detection of chromatin coassociations using enhanced chromosome conformation capture on chip. Nat Protoc 2012 ; 7 : 1335–1350. [CrossRef] [PubMed] [Google Scholar]
  18. Van de Werken HJ, Landan G, Holwerda SJ et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods 2012 ; 9 : 969–972. [CrossRef] [PubMed] [Google Scholar]
  19. Dostie J, Richmond TA, Arnaout RA et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 2006 ; 16 : 1299–1309. [CrossRef] [PubMed] [Google Scholar]
  20. Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape of gene promoters. Nature 2012 ; 489 : 109–113. [CrossRef] [PubMed] [Google Scholar]
  21. Nora EP, Lajoie BR, Schulz EG et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 2012 ; 485 : 381–385. [CrossRef] [PubMed] [Google Scholar]
  22. Lieberman-Aiden E, van Berkum NL, Williams L et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009 ; 326 : 289–293. [CrossRef] [PubMed] [Google Scholar]
  23. Mirny LA. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 2011 ; 19 : 37–51. [CrossRef] [PubMed] [Google Scholar]
  24. Sexton T, Yaffe E, Kenigsberg E et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 2012 ; 148 : 458–472. [CrossRef] [PubMed] [Google Scholar]
  25. Dixon JR, Selvaraj S, Yue F et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012 ; 485 : 376–380. [CrossRef] [PubMed] [Google Scholar]
  26. Noordermeer D, Leleu M, Splinter E et al. The dynamic architecture of Hox gene clusters. Science 2011 ; 334 : 222–225. [CrossRef] [PubMed] [Google Scholar]
  27. Naumova N, Imakaev M, Fudenberg G et al. Organization of the mitotic chromosome. Science 2013 ; 342 : 948–953. [CrossRef] [PubMed] [Google Scholar]
  28. Nagano T, Lubling Y, Stevens TJ et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 2013 ; 502 : 59–64. [CrossRef] [PubMed] [Google Scholar]
  29. Yaffe E, Tanay A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 2011 ; 43 : 1059–1065. [CrossRef] [PubMed] [Google Scholar]
  30. Simon DN, Wilson KL. The nucleoskeleton as a genome-associated dynamic network of networks. Nat Rev Mol Cell Biol 2011 ; 12 : 695–708. [CrossRef] [PubMed] [Google Scholar]
  31. Marti-Renom MA, Mirny LA. Bridging the resolution gap in structural modeling of 3D genome organization. PloS Comput Biol 2011 ; 7 : e1002125. [CrossRef] [PubMed] [Google Scholar]
  32. Rao SSP, Huntley MH, Durand NC et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014 ; 159 : 1–16. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.