Free Access
Issue
Med Sci (Paris)
Volume 31, Number 3, Mars 2015
Page(s) 291 - 303
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153103015
Published online 08 April 2015
  1. Crick FH. Thinking about the brain. Sci Am 1979 ; 241 : 219–232. [CrossRef] [PubMed] [Google Scholar]
  2. Crick FH. The impact of molecular biology on neuroscience. Philos Trans R Soc Lond B Biol Sci 1999 ; 354 : 2021–2025. [CrossRef] [PubMed] [Google Scholar]
  3. Deisseroth K, Feng G, Majewska AK, et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 2006 ; 26 : 10380–10386. [CrossRef] [PubMed] [Google Scholar]
  4. Dugue GP, Akemann W, Knopfel T. A comprehensive concept of optogenetics. Prog Brain Res 2012 ; 196 : 1–28. [CrossRef] [PubMed] [Google Scholar]
  5. Peterka DS, Takahashi H, Yuste R. Imaging voltage in neurons. Neuron 2011; d : 9–21. [CrossRef] [PubMed] [Google Scholar]
  6. Paredes RM, Etzler JC, Watts LT, Leichleiter JD. Chemical calcium indicators. Methods 2008 ; 46 : 143–151. [CrossRef] [PubMed] [Google Scholar]
  7. Knopfel T. Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci 2012 ; 13 : 687–700. [PubMed] [Google Scholar]
  8. Perron A, Akemann W, Mutoh H, Knöpfel T. Genetically encoded probes for optical imaging of brain electrical activity. Prog Brain Res 2012 ; 196 : 63–77. [CrossRef] [PubMed] [Google Scholar]
  9. Tian L, Hires SA, Looger LL. Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb Protoc 2012 : 647–656. [PubMed] [Google Scholar]
  10. Prasher DC, Eckenrode VK, Ward WW, et al. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 1992 ; 111 : 229–233. [CrossRef] [PubMed] [Google Scholar]
  11. Matz MV, Fradkov AF, Labas YA, et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 1999 ; 17 : 969–973. [CrossRef] [PubMed] [Google Scholar]
  12. Shaner NC, Patterson GH, Davidson MW. Advances in fluorescent protein technology. J Cell Sci 2007 ; 120 : 4247–4260. [CrossRef] [PubMed] [Google Scholar]
  13. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 2010 ; 90 : 1103–1163. [CrossRef] [PubMed] [Google Scholar]
  14. Miesenbock G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 1998 ; 394 : 192–195. [CrossRef] [PubMed] [Google Scholar]
  15. Akerboom J, Rivera JD, Guilbe MM, et al. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem 2009 ; 284 : 6455–6464. [CrossRef] [PubMed] [Google Scholar]
  16. Chen TW, Wardill TJ, Sun Y, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013 ; 499 : 295–300. [CrossRef] [PubMed] [Google Scholar]
  17. Akerboom J, Chen TW, Wardill TJ, et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 2012 ; 32 : 13819–13840. [CrossRef] [PubMed] [Google Scholar]
  18. Tian L, Hires SA, Mao T, et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 2009 ; 6 : 875–881. [CrossRef] [PubMed] [Google Scholar]
  19. Schrodel T, Prevedel R, Aumayr K, et al. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat Methods 2013 ; 10 : 1013–1020. [CrossRef] [PubMed] [Google Scholar]
  20. Ahrens MB, Orger MB, Robson DN, et al. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 2013 ; 10 : 413–420. [CrossRef] [PubMed] [Google Scholar]
  21. Panier T, Romano SA, Olive R, et al. Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Front Neural Circuits 2013 ; 7 : 65. [CrossRef] [PubMed] [Google Scholar]
  22. Prevedel R, Yoon YG, Hoffmann M, et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat Methods 2014 ; 11 : 727–730. [CrossRef] [PubMed] [Google Scholar]
  23. Cao G, Platisa J, Pieribone VA, et al. Genetically targeted optical electrophysiology in intact neural circuits. Cell 2013 ; 154 : 904–913. [CrossRef] [PubMed] [Google Scholar]
  24. St-Pierre F, Marshall JD, Yang Y, et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci 2014 ; 17 : 884–889. [CrossRef] [PubMed] [Google Scholar]
  25. Akemann W, Mutoh H, Perron A, et al. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophysiol 2012 ; 108 : 2323–2337. [CrossRef] [PubMed] [Google Scholar]
  26. Horikawa K, Yamada Y, Matsuda T, et al. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat Methods 2010 ; 7 : 729–732. [CrossRef] [PubMed] [Google Scholar]
  27. Thestrup T, Litzlbauer J, Bartholomäus I, et al. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat Methods 2014 ; 11 : 175–182. [CrossRef] [PubMed] [Google Scholar]
  28. Wilson T, Hastings JW. Bioluminescence. Annu Rev Cell Dev Biol 1998 ; 14 : 197–230. [CrossRef] [PubMed] [Google Scholar]
  29. Ridgway EB, Ashley CC. Calcium transients in single muscle fibers. Biochem Biophys Res Commun 1967 ; 29 : 229–234. [CrossRef] [PubMed] [Google Scholar]
  30. Llinas R, Blinks JR, Nicholson C. Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin. Science 1972 ; 176 : 1127–1129. [CrossRef] [PubMed] [Google Scholar]
  31. Prasher D, McCann RO, Cormier MJ. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Commun 1985 ; 126 : 1259–1268. [CrossRef] [PubMed] [Google Scholar]
  32. Knight H, Knight MR. Recombinant aequorin methods for intracellular calcium measurement in plants. Methods Cell Biol 1995 ; 49 : 201–216. [CrossRef] [PubMed] [Google Scholar]
  33. Curie T, Rogers KL, Colasante C, Brûlet P. Red-shifted aequorin-based bioluminescent reporters for in vivo imaging of Ca2+ signaling. Mol Imaging 2007 ; 6 : 30–42. [PubMed] [Google Scholar]
  34. Drobac E, Tricoire L, Chaffotte AF, et al. Calcium imaging in single neurons from brain slices using bioluminescent reporters. J Neurosci Res 2010 ; 88 : 695–711. [PubMed] [Google Scholar]
  35. Pichler A, Prior JL, Piwnica-Worms D. Imaging reversal of multidrug resistance in living mice with bioluminescence: MDR1 P-glycoprotein transports coelenterazine. Proc Natl Acad Sci USA 2004 ; 101 : 1702–1707. [CrossRef] [Google Scholar]
  36. Tricoire L, Lambolez B. Neuronal network imaging in acute slices using Ca2+ sensitive bioluminescent reporter. Methods Mol Biol 2014 ; 1098 : 33–45. [CrossRef] [PubMed] [Google Scholar]
  37. Naumann EA, Kampff AR, Prober DA, et al. Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 2010 ; 13 : 513–520. [CrossRef] [PubMed] [Google Scholar]
  38. Martin JR, Rogers KL, Chagneau C, Brûlet P. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila. PLoS One 2007 ; 2 : e275. [CrossRef] [PubMed] [Google Scholar]
  39. Rogers KL, Picaud S, Roncali E, et al. Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 2007 ; 2 : e974. [CrossRef] [PubMed] [Google Scholar]
  40. Szobota S, McKenzie C, Janovjak H. Optical control of ligand-gated ion channels. Methods Mol Biol 2013 ; 998 : 417–435. [CrossRef] [PubMed] [Google Scholar]
  41. Lima SQ, Miesenbock G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 2005 ; 121 : 141–152. [CrossRef] [PubMed] [Google Scholar]
  42. Janovjak H, Szobota S, Wyart C, et al. A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat Neurosci 2010 ; 13 : 1027–1032. [CrossRef] [PubMed] [Google Scholar]
  43. Kramer RH, Mourot A, Adesnik H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 2013 ; 16 : 816–823. [CrossRef] [PubMed] [Google Scholar]
  44. Porter ML, Blasic JR, Bok MJ, et al. Shedding new light on opsin evolution. Proc Biol Sci 2012 ; 279 : 3–14. [CrossRef] [PubMed] [Google Scholar]
  45. Khorana HG, Knox BE, Nasi E, et al. Expression of a bovine rhodopsin gene in Xenopus oocytes: demonstration of light-dependent ionic currents. Proc Natl Acad Sci USA 1988 ; 85 : 7917–7921. [CrossRef] [Google Scholar]
  46. Melyan Z, Curran J, Hofmann K, et al. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 2005 ; 433 : 741–745. [CrossRef] [PubMed] [Google Scholar]
  47. Airan RD, Thompson KR, Fenno LE, et al. Temporally precise in vivo control of intracellular signalling. Nature 2009 ; 458 : 1025–1029. [CrossRef] [PubMed] [Google Scholar]
  48. Zemelman BV, Lee GA, Ng M, Miesenböck G. Selective photostimulation of genetically chARGed neurons. Neuron 2002 ; 33 : 15–22. [CrossRef] [PubMed] [Google Scholar]
  49. Li X, Gutierrez DV, Hanson MG, et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci USA 2005 ; 102 : 17816–17821. [CrossRef] [Google Scholar]
  50. Gutierrez DV, Mark MD, Masseck O, et al. Optogenetic control of motor coordination by Gi/o protein-coupled vertebrate rhodopsin in cerebellar Purkinje cells. J Biol Chem 2011 ; 286 : 25848–25858. [CrossRef] [PubMed] [Google Scholar]
  51. Masseck OA, Rubelowski JM, Spoida K, Herlitze S. Light- and drug-activated G-protein-coupled receptors to control intracellular signalling. Exp Physiol 2011 ; 96 : 51–56. [CrossRef] [PubMed] [Google Scholar]
  52. Koyanagi M, Terakita A. Diversity of animal opsin-based pigments and their optogenetic potential. Biochim Biophys Acta 2014 ; 1837 : 710–716. [CrossRef] [PubMed] [Google Scholar]
  53. Nagel G, Ollig D, Fuhrmann M, et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 2002 ; 296 : 2395–2398. [CrossRef] [PubMed] [Google Scholar]
  54. Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 2003 ; 100 : 13940–13945. [CrossRef] [Google Scholar]
  55. Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005 ; 8 : 1263–1268. [Google Scholar]
  56. Gunaydin LA, Yizhar O, Berndt A, et al. Ultrafast optogenetic control. Nat Neurosci 2010 ; 13 : 387–392. [CrossRef] [PubMed] [Google Scholar]
  57. Yizhar O, Fenno LE, Prigge M, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011 ; 477 : 171–178. [CrossRef] [PubMed] [Google Scholar]
  58. Lin JY, Knutsen PM, Muller A, et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 2013 ; 16 : 1499–1508. [Google Scholar]
  59. Klapoetke NC, Murata Y, Kim SS, et al. Independent optical excitation of distinct neural populations. Nat Methods 2014 ; 11 : 338–346. [CrossRef] [PubMed] [Google Scholar]
  60. Gradinaru V, Zhang F, Ramakrishnan C, et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 2010 ; 141 : 154–165. [CrossRef] [PubMed] [Google Scholar]
  61. Chuong AS, Miri ML, Busskamp V, et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 2014 ; 17 : 1123–1129. [Google Scholar]
  62. Wietek J, Wiegert JS, Adeishvili N, et al. Conversion of channelrhodopsin into a light-gated chloride channel. Science 2014 ; 344 : 409–412. [CrossRef] [PubMed] [Google Scholar]
  63. Berndt A, Lee SY, Ramakrishnan C, Deisseroth K. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 2014; 344 : 420–424. [CrossRef] [PubMed] [Google Scholar]
  64. Gong Y, Li JZ, Schnitzer MJ. Enhanced archaerhodopsin fluorescent protein voltage indicators. PLoS One 2013 ; 8 : e66959. [CrossRef] [PubMed] [Google Scholar]
  65. Hochbaum DR, Zhao Y, Farhi SL, et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 2014 ; 11 : 825–833. [CrossRef] [PubMed] [Google Scholar]
  66. Zou P, Zhao Y, Douglass AD, et al. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat Commun 2014 ; 5 : 4625. [PubMed] [Google Scholar]
  67. Lo L, Anderson DJ. A Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron 2011 ; 72 : 938–950. [CrossRef] [PubMed] [Google Scholar]
  68. Osakada F, Mori T, Cetin AH, et al. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 2011 ; 71 : 617–631. [CrossRef] [PubMed] [Google Scholar]
  69. Atasoy D, Aponte Y, Su HH, Sternson SM. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 2008 ; 28 : 7025–7030. [CrossRef] [PubMed] [Google Scholar]
  70. Petreanu L, Gutnisky DA, Huber D, et al. Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 2012 ; 489 : 299–303. [CrossRef] [PubMed] [Google Scholar]
  71. Flusberg BA, Cocker ED, Piyawattanametha W, et al. Fiber-optic fluorescence imaging. Nat Methods 2005 ; 2 : 941–950. [CrossRef] [PubMed] [Google Scholar]
  72. Cui G, Jun SB, Jin X, et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 2013 ; 494 : 238–242. [CrossRef] [PubMed] [Google Scholar]
  73. Gunaydin LA, Grosenick L, Finkelstein JC, et al. Natural neural projection dynamics underlying social behavior. Cell 2014 ; 157 : 1535–1551. [CrossRef] [PubMed] [Google Scholar]
  74. Vaziri A, Emiliani V. Reshaping the optical dimension in optogenetics. Curr Opin Neurobiol 2012 ; 22 : 128–137. [CrossRef] [PubMed] [Google Scholar]
  75. Zorzos AN, Scholvin J, Boyden ES, Fonstad CG. Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt Lett 2012 ; 37 : 4841–4843. [CrossRef] [PubMed] [Google Scholar]
  76. Kim TI, McCall JG, Jung YH, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013 ; 340 : 211–216. [CrossRef] [PubMed] [Google Scholar]
  77. Lima SQ, Hromádka T, Znamenskiy P, Zador AM. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One 2009 ; 4 : e6099. [CrossRef] [PubMed] [Google Scholar]
  78. Packer AM, Russell LE, Dalgleish HW, Häusser M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 2014 ; doi : 10.1038/nmeth.3217 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.