Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 3, Mars 2015
Page(s) 291 - 303
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153103015
Publié en ligne 8 avril 2015
  1. Crick FH. Thinking about the brain. Sci Am 1979 ; 241 : 219–232. [CrossRef] [PubMed]
  2. Crick FH. The impact of molecular biology on neuroscience. Philos Trans R Soc Lond B Biol Sci 1999 ; 354 : 2021–2025. [CrossRef] [PubMed]
  3. Deisseroth K, Feng G, Majewska AK, et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 2006 ; 26 : 10380–10386. [CrossRef] [PubMed]
  4. Dugue GP, Akemann W, Knopfel T. A comprehensive concept of optogenetics. Prog Brain Res 2012 ; 196 : 1–28. [CrossRef] [PubMed]
  5. Peterka DS, Takahashi H, Yuste R. Imaging voltage in neurons. Neuron 2011; d : 9–21. [CrossRef] [PubMed]
  6. Paredes RM, Etzler JC, Watts LT, Leichleiter JD. Chemical calcium indicators. Methods 2008 ; 46 : 143–151. [CrossRef] [PubMed]
  7. Knopfel T. Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci 2012 ; 13 : 687–700. [PubMed]
  8. Perron A, Akemann W, Mutoh H, Knöpfel T. Genetically encoded probes for optical imaging of brain electrical activity. Prog Brain Res 2012 ; 196 : 63–77. [CrossRef] [PubMed]
  9. Tian L, Hires SA, Looger LL. Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb Protoc 2012 : 647–656.
  10. Prasher DC, Eckenrode VK, Ward WW, et al. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 1992 ; 111 : 229–233. [CrossRef] [PubMed]
  11. Matz MV, Fradkov AF, Labas YA, et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 1999 ; 17 : 969–973. [CrossRef] [PubMed]
  12. Shaner NC, Patterson GH, Davidson MW. Advances in fluorescent protein technology. J Cell Sci 2007 ; 120 : 4247–4260. [CrossRef] [PubMed]
  13. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 2010 ; 90 : 1103–1163. [CrossRef] [PubMed]
  14. Miesenbock G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 1998 ; 394 : 192–195. [CrossRef] [PubMed]
  15. Akerboom J, Rivera JD, Guilbe MM, et al. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem 2009 ; 284 : 6455–6464. [CrossRef] [PubMed]
  16. Chen TW, Wardill TJ, Sun Y, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013 ; 499 : 295–300. [CrossRef] [PubMed]
  17. Akerboom J, Chen TW, Wardill TJ, et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 2012 ; 32 : 13819–13840. [CrossRef] [PubMed]
  18. Tian L, Hires SA, Mao T, et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 2009 ; 6 : 875–881. [CrossRef] [PubMed]
  19. Schrodel T, Prevedel R, Aumayr K, et al. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat Methods 2013 ; 10 : 1013–1020. [CrossRef] [PubMed]
  20. Ahrens MB, Orger MB, Robson DN, et al. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 2013 ; 10 : 413–420. [CrossRef] [PubMed]
  21. Panier T, Romano SA, Olive R, et al. Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Front Neural Circuits 2013 ; 7 : 65. [CrossRef] [PubMed]
  22. Prevedel R, Yoon YG, Hoffmann M, et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat Methods 2014 ; 11 : 727–730. [CrossRef] [PubMed]
  23. Cao G, Platisa J, Pieribone VA, et al. Genetically targeted optical electrophysiology in intact neural circuits. Cell 2013 ; 154 : 904–913. [CrossRef]
  24. St-Pierre F, Marshall JD, Yang Y, et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci 2014 ; 17 : 884–889. [CrossRef] [PubMed]
  25. Akemann W, Mutoh H, Perron A, et al. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophysiol 2012 ; 108 : 2323–2337. [CrossRef] [PubMed]
  26. Horikawa K, Yamada Y, Matsuda T, et al. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat Methods 2010 ; 7 : 729–732. [CrossRef] [PubMed]
  27. Thestrup T, Litzlbauer J, Bartholomäus I, et al. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat Methods 2014 ; 11 : 175–182. [CrossRef] [PubMed]
  28. Wilson T, Hastings JW. Bioluminescence. Annu Rev Cell Dev Biol 1998 ; 14 : 197–230. [CrossRef] [PubMed]
  29. Ridgway EB, Ashley CC. Calcium transients in single muscle fibers. Biochem Biophys Res Commun 1967 ; 29 : 229–234. [CrossRef] [PubMed]
  30. Llinas R, Blinks JR, Nicholson C. Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin. Science 1972 ; 176 : 1127–1129. [CrossRef] [PubMed]
  31. Prasher D, McCann RO, Cormier MJ. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Commun 1985 ; 126 : 1259–1268. [CrossRef] [PubMed]
  32. Knight H, Knight MR. Recombinant aequorin methods for intracellular calcium measurement in plants. Methods Cell Biol 1995 ; 49 : 201–216. [CrossRef] [PubMed]
  33. Curie T, Rogers KL, Colasante C, Brûlet P. Red-shifted aequorin-based bioluminescent reporters for in vivo imaging of Ca2+ signaling. Mol Imaging 2007 ; 6 : 30–42. [PubMed]
  34. Drobac E, Tricoire L, Chaffotte AF, et al. Calcium imaging in single neurons from brain slices using bioluminescent reporters. J Neurosci Res 2010 ; 88 : 695–711. [PubMed]
  35. Pichler A, Prior JL, Piwnica-Worms D. Imaging reversal of multidrug resistance in living mice with bioluminescence: MDR1 P-glycoprotein transports coelenterazine. Proc Natl Acad Sci USA 2004 ; 101 : 1702–1707. [CrossRef]
  36. Tricoire L, Lambolez B. Neuronal network imaging in acute slices using Ca2+ sensitive bioluminescent reporter. Methods Mol Biol 2014 ; 1098 : 33–45. [CrossRef] [PubMed]
  37. Naumann EA, Kampff AR, Prober DA, et al. Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 2010 ; 13 : 513–520. [CrossRef] [PubMed]
  38. Martin JR, Rogers KL, Chagneau C, Brûlet P. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila. PLoS One 2007 ; 2 : e275. [CrossRef] [PubMed]
  39. Rogers KL, Picaud S, Roncali E, et al. Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 2007 ; 2 : e974. [CrossRef] [PubMed]
  40. Szobota S, McKenzie C, Janovjak H. Optical control of ligand-gated ion channels. Methods Mol Biol 2013 ; 998 : 417–435. [CrossRef] [PubMed]
  41. Lima SQ, Miesenbock G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 2005 ; 121 : 141–152. [CrossRef]
  42. Janovjak H, Szobota S, Wyart C, et al. A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat Neurosci 2010 ; 13 : 1027–1032. [CrossRef] [PubMed]
  43. Kramer RH, Mourot A, Adesnik H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 2013 ; 16 : 816–823. [CrossRef] [PubMed]
  44. Porter ML, Blasic JR, Bok MJ, et al. Shedding new light on opsin evolution. Proc Biol Sci 2012 ; 279 : 3–14. [CrossRef] [PubMed]
  45. Khorana HG, Knox BE, Nasi E, et al. Expression of a bovine rhodopsin gene in Xenopus oocytes: demonstration of light-dependent ionic currents. Proc Natl Acad Sci USA 1988 ; 85 : 7917–7921. [CrossRef]
  46. Melyan Z, Curran J, Hofmann K, et al. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 2005 ; 433 : 741–745. [CrossRef] [PubMed]
  47. Airan RD, Thompson KR, Fenno LE, et al. Temporally precise in vivo control of intracellular signalling. Nature 2009 ; 458 : 1025–1029. [CrossRef] [PubMed]
  48. Zemelman BV, Lee GA, Ng M, Miesenböck G. Selective photostimulation of genetically chARGed neurons. Neuron 2002 ; 33 : 15–22. [CrossRef] [PubMed]
  49. Li X, Gutierrez DV, Hanson MG, et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci USA 2005 ; 102 : 17816–17821. [CrossRef]
  50. Gutierrez DV, Mark MD, Masseck O, et al. Optogenetic control of motor coordination by Gi/o protein-coupled vertebrate rhodopsin in cerebellar Purkinje cells. J Biol Chem 2011 ; 286 : 25848–25858. [CrossRef] [PubMed]
  51. Masseck OA, Rubelowski JM, Spoida K, Herlitze S. Light- and drug-activated G-protein-coupled receptors to control intracellular signalling. Exp Physiol 2011 ; 96 : 51–56. [CrossRef] [PubMed]
  52. Koyanagi M, Terakita A. Diversity of animal opsin-based pigments and their optogenetic potential. Biochim Biophys Acta 2014 ; 1837 : 710–716. [CrossRef] [PubMed]
  53. Nagel G, Ollig D, Fuhrmann M, et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 2002 ; 296 : 2395–2398. [CrossRef] [PubMed]
  54. Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 2003 ; 100 : 13940–13945. [CrossRef]
  55. Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005 ; 8 : 1263–1268. [CrossRef] [PubMed]
  56. Gunaydin LA, Yizhar O, Berndt A, et al. Ultrafast optogenetic control. Nat Neurosci 2010 ; 13 : 387–392. [CrossRef] [PubMed]
  57. Yizhar O, Fenno LE, Prigge M, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011 ; 477 : 171–178. [CrossRef] [PubMed]
  58. Lin JY, Knutsen PM, Muller A, et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 2013 ; 16 : 1499–1508. [CrossRef] [PubMed]
  59. Klapoetke NC, Murata Y, Kim SS, et al. Independent optical excitation of distinct neural populations. Nat Methods 2014 ; 11 : 338–346. [CrossRef] [PubMed]
  60. Gradinaru V, Zhang F, Ramakrishnan C, et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 2010 ; 141 : 154–165. [CrossRef]
  61. Chuong AS, Miri ML, Busskamp V, et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 2014 ; 17 : 1123–1129. [CrossRef] [PubMed]
  62. Wietek J, Wiegert JS, Adeishvili N, et al. Conversion of channelrhodopsin into a light-gated chloride channel. Science 2014 ; 344 : 409–412. [CrossRef] [PubMed]
  63. Berndt A, Lee SY, Ramakrishnan C, Deisseroth K. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 2014; 344 : 420–424. [CrossRef] [PubMed]
  64. Gong Y, Li JZ, Schnitzer MJ. Enhanced archaerhodopsin fluorescent protein voltage indicators. PLoS One 2013 ; 8 : e66959. [CrossRef] [PubMed]
  65. Hochbaum DR, Zhao Y, Farhi SL, et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 2014 ; 11 : 825–833. [CrossRef] [PubMed]
  66. Zou P, Zhao Y, Douglass AD, et al. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat Commun 2014 ; 5 : 4625. [PubMed]
  67. Lo L, Anderson DJ. A Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron 2011 ; 72 : 938–950. [CrossRef] [PubMed]
  68. Osakada F, Mori T, Cetin AH, et al. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 2011 ; 71 : 617–631. [CrossRef] [PubMed]
  69. Atasoy D, Aponte Y, Su HH, Sternson SM. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 2008 ; 28 : 7025–7030. [CrossRef] [PubMed]
  70. Petreanu L, Gutnisky DA, Huber D, et al. Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 2012 ; 489 : 299–303. [CrossRef] [PubMed]
  71. Flusberg BA, Cocker ED, Piyawattanametha W, et al. Fiber-optic fluorescence imaging. Nat Methods 2005 ; 2 : 941–950. [CrossRef] [PubMed]
  72. Cui G, Jun SB, Jin X, et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 2013 ; 494 : 238–242. [CrossRef] [PubMed]
  73. Gunaydin LA, Grosenick L, Finkelstein JC, et al. Natural neural projection dynamics underlying social behavior. Cell 2014 ; 157 : 1535–1551. [CrossRef]
  74. Vaziri A, Emiliani V. Reshaping the optical dimension in optogenetics. Curr Opin Neurobiol 2012 ; 22 : 128–137. [CrossRef] [PubMed]
  75. Zorzos AN, Scholvin J, Boyden ES, Fonstad CG. Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt Lett 2012 ; 37 : 4841–4843. [CrossRef] [PubMed]
  76. Kim TI, McCall JG, Jung YH, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013 ; 340 : 211–216. [CrossRef] [PubMed]
  77. Lima SQ, Hromádka T, Znamenskiy P, Zador AM. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One 2009 ; 4 : e6099. [CrossRef] [PubMed]
  78. Packer AM, Russell LE, Dalgleish HW, Häusser M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 2014 ; doi : 10.1038/nmeth.3217

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.