Free Access
Med Sci (Paris)
Volume 31, Number 3, Mars 2015
Page(s) 282 - 290
Section M/S Revues
Published online 08 April 2015
  1. Romby P, Marzi S, Westhof E. La structure atomique du ribosome en pleine lumière. Med Sci (Paris) 2009 ; 25 : 977–981. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Gillet R, Felden B. Lost in translation : le déblocage des ribosomes bactériens par le mécanisme de trans-traduction. Med Sci (Paris) 2007 ; 23 : 633–639. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Schmeing TM, Ramakrishnan V. What recent ribosome structures have revealed about the mechanism of translation. Nature 2009 ; 461 : 1234–1242. [CrossRef] [PubMed] [Google Scholar]
  4. Zaher HS, Green R. Quality control by the ribosome following peptide bond formation. Nature 2009 ; 457 : 161–166. [CrossRef] [PubMed] [Google Scholar]
  5. Wilson DN. Less is more for leaderless mRNA translation. Mol Cell 2009 ; 33 : 141–142. [CrossRef] [PubMed] [Google Scholar]
  6. Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 1995 ; 6 : 494–500. [CrossRef] [PubMed] [Google Scholar]
  7. Neubauer C, Gillet R, Kelley AC, Ramakrishnan V. Decoding in the absence of a codon by tmRNA and SmpB in the ribosome. Science 2012 ; 335 : 1366–1369. [CrossRef] [PubMed] [Google Scholar]
  8. Weis F, Bron P, Giudice E, et al. tmRNA-SmpB: a journey to the centre of the bacterial ribosome. EMBO J 2010 ; 29 : 3810–3818. [CrossRef] [PubMed] [Google Scholar]
  9. Weis F, Bron P, Rolland JP, et al. Accommodation of tmRNA-SmpB into stalled ribosomes: a cryo-EM study. RNA 2010 ; 16 : 299–306. [CrossRef] [PubMed] [Google Scholar]
  10. Giudice E, Mace K, Gillet R. Trans-translation exposed: understanding the structures and functions of tmRNA-SmpB. Front Microbiol 2014 ; 5 : 113. [CrossRef] [PubMed] [Google Scholar]
  11. Ito K, Chadani Y, Nakamori K, et al. Nascentome analysis uncovers futile protein synthesis in Escherichia coli. PLoS One 2011 ; 6 : e28413. [CrossRef] [PubMed] [Google Scholar]
  12. Moore SD, Sauer RT. Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli. Mol Microbiol 2005 ; 58 : 456–466. [CrossRef] [PubMed] [Google Scholar]
  13. Graille M, Seraphin B. Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat Rev Mol Cell Biol 2012 ; 13 : 727–735. [CrossRef] [PubMed] [Google Scholar]
  14. Inada T. Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination. Biochim Biophys Acta 2013 ; 1829 : 634–642. [CrossRef] [PubMed] [Google Scholar]
  15. Shimizu Y. ArfA recruits RF2 into stalled ribosomes. J Mol Biol 2012 ; 423 : 624–631. [CrossRef] [PubMed] [Google Scholar]
  16. Schaub RE, Poole SJ, Garza-Sanchez F, et al. Proteobacterial ArfA peptides are synthesized from non-stop messenger RNAs. J Biol Chem 2012 ; 287 : 29765–29775. [CrossRef] [PubMed] [Google Scholar]
  17. Hayes CS, Keiler KC. Beyond ribosome rescue: tmRNA and co-translational processes. FEBS Lett 2010 ; 584 : 413–419. [CrossRef] [PubMed] [Google Scholar]
  18. Handa Y, Inaho N, Nameki N. YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res 2011 ; 39 : 1739–1748. [CrossRef] [PubMed] [Google Scholar]
  19. Gagnon MG, Seetharaman SV, Bulkley D, Steitz TA. Structural basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome. Science 2012 ; 335 : 1370–1372. [CrossRef] [PubMed] [Google Scholar]
  20. Keiler KC, Feaga HA. Resolving nonstop translation complexes is a matter of life or death. J Bacteriol 2014 ; 196 : 2123–2130. [CrossRef] [PubMed] [Google Scholar]
  21. Pech M, Karim Z, Yamamoto H, et al. Elongation factor 4 (EF4/LepA) accelerates protein synthesis at increased Mg2+ concentrations. Proc Natl Acad Sci USA 2011 ; 108 : 3199–3203. [CrossRef] [Google Scholar]
  22. Doerfel LK, Wohlgemuth I, Kothe C, et al. EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 2013 ; 339 : 85–88. [CrossRef] [PubMed] [Google Scholar]
  23. Ude S, Lassak J, Starosta AL, et al. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 2013 ; 339 : 82–85. [CrossRef] [PubMed] [Google Scholar]
  24. Vivanco-Dominguez S, Bueno-Martinez J, Leon-Avila G, et al. Protein synthesis factors (RF1, RF2, RF3, RRF, and tmRNA) and peptidyl-tRNA hydrolase rescue stalled ribosomes at sense codons. J Mol Biol 2012 ; 417 : 425–439. [CrossRef] [PubMed] [Google Scholar]
  25. Ferbitz L, Maier T, Patzelt H, et al. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 2004 ; 431 : 590–596. [CrossRef] [PubMed] [Google Scholar]
  26. Wendrich TM, Blaha G, Wilson DN, et al. Dissection of the mechanism for the stringent factor RelA. Mol Cell 2002 ; 10 : 779–788. [CrossRef] [PubMed] [Google Scholar]
  27. Gerdes K, Christensen SK, Lobner-Olesen A. Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 2005 ; 3 : 371–382. [CrossRef] [PubMed] [Google Scholar]
  28. Christensen SK, Pedersen K, Hansen FG, Gerdes K. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J Mol Biol 2003 ; 332 : 809–819. [CrossRef] [PubMed] [Google Scholar]
  29. Pedersen K, Zavialov AV, Pavlov MY, et al. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 2003 ; 112 : 131–140. [CrossRef] [PubMed] [Google Scholar]
  30. Giudice E, Gillet R. The task force that rescues stalled ribosomes in bacteria. Trends Biochem Sci 2013 ; 38 : 403–411. [CrossRef] [PubMed] [Google Scholar]
  31. Ramadoss NS, Zhou X, Keiler KC. tmRNA is essential in Shigella flexneri. PLoS One 2013 ; 8 : e57537. [CrossRef] [PubMed] [Google Scholar]
  32. Huang C, Wolfgang MC, Withey J, et al. Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J 2000 ; 19 : 1098–1107. [CrossRef] [PubMed] [Google Scholar]
  33. Keiler KC, Alumasa JN. The potential of trans-translation inhibitors as antibiotics. Future Microbiol 2013 ; 8 : 1235–1237. [CrossRef] [PubMed] [Google Scholar]
  34. De la Cruz J, Vioque A. Increased sensitivity to protein synthesis inhibitors in cells lacking tmRNA. RNA 2001 ; 7 : 1708–1716. [PubMed] [Google Scholar]
  35. Vioque A, De la Cruz J. Trans-translation and protein synthesis inhibitors. FEMS Microbiol Lett 2003 ; 218 : 9–14. [CrossRef] [PubMed] [Google Scholar]
  36. Andini N, Nash KA. Expression of tmRNA in mycobacteria is increased by antimicrobial agents that target the ribosome. FEMS Microbiol Lett 2011 ; 322 : 172–179. [CrossRef] [PubMed] [Google Scholar]
  37. Cole ST. Microbiology. Pyrazinamide-old TB drug finds new target. Science 2011 ; 333 : 1583–1584. [CrossRef] [PubMed] [Google Scholar]
  38. Shi W, Zhang X, Jiang X, et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 2011 ; 333 : 1630–1632. [CrossRef] [PubMed] [Google Scholar]
  39. Ramadoss NS, Alumasa JN, Cheng L, et al. Small molecule inhibitors of trans-translation have broad-spectrum antibiotic activity. Proc Natl Acad Sci USA 2013 ; 110 : 10282–10287. [CrossRef] [Google Scholar]
  40. Okan NA, Mena P, Benach JL, et al. The smpB-ssrA mutant of Yersinia pestis functions as a live attenuated vaccine to protect mice against pulmonary plague infection. Infect Immun 2010 ; 78 : 1284–1293. [CrossRef] [PubMed] [Google Scholar]
  41. Zhang J, van Aartsen JJ, Jiang X, et al. Expansion of the known Klebsiella pneumoniae species gene pool by characterization of novel alien DNA islands integrated into tmRNA gene sites. J Microbiol Methods 2011 ; 84 : 283–289. [CrossRef] [PubMed] [Google Scholar]
  42. Wernecke M, Mullen C, Sharma V, et al. Evaluation of a novel real-time PCR test based on the ssrA gene for the identification of group B streptococci in vaginal swabs. BMC Infect Dis 2009 ; 9 : 148. [CrossRef] [PubMed] [Google Scholar]
  43. O’Grady J, Sedano-Balbas S, Maher M, et al. Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. Food Microbiol 2008; 25 : 75–84. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.