Accès gratuit
Numéro |
Med Sci (Paris)
Volume 31, Numéro 3, Mars 2015
Chémobiologie
|
|
---|---|---|
Page(s) | 312 - 319 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20153103017 | |
Publié en ligne | 8 avril 2015 |
- Lipinski C, Lombardo F, Dominy B, Feeney P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001 ; 46 : 3–26. [CrossRef] [PubMed] [Google Scholar]
- Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002 ; 45 : 2615–2623. [CrossRef] [PubMed] [Google Scholar]
- Oprea TI. Property distribution of drug-related chemical databases. J Comput Aided Mol Des 2000 ; 14 : 251–264. [CrossRef] [PubMed] [Google Scholar]
- Walters WP, Murcko MA. Prediction of drug-likeness. Adv Drug Deliv Rev 2002 ; 54 : 255–271. [CrossRef] [PubMed] [Google Scholar]
- Rishton GM. Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov Today 2003 ; 8 : 86–96. [CrossRef] [PubMed] [Google Scholar]
- Hughes JD, Blagg J, Price DA, et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 2008 ; 18 : 4872–4875. [CrossRef] [PubMed] [Google Scholar]
- Bickerton GR, Paolini GV, Besnard J, et al. Quantifying the chemical beauty of drugs. Nat Chem 2012 ; 4 : 90–98. [CrossRef] [PubMed] [Google Scholar]
- Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 2010 ; 53 : 2719–2740. [CrossRef] [PubMed] [Google Scholar]
- Gupta S. New drug development. In : Drug discovery and clinical research. Delhi, India : JayPee Brothers Medical Publishers Ltd, 2011 : 1–135. [Google Scholar]
- Sheppard DW, Lipkin MJ, Harris CJ, et al. Strategies for small molecule library design. Curr Pharm Des 2013 ; 19 : 1–9. [Google Scholar]
- Lipkin MJ, Stevens AP, Livingstone DJ, Harris CJ. How large does a compound screening collection need to be? Comb Chem High Throughput Screen 2008 ; 11 : 482–493. [CrossRef] [PubMed] [Google Scholar]
- Pirhadi S, Shiri F, Ghasemi JB. Methods and applications of structure based pharmacophores in drug discovery. Curr Top Med Chem 2013 ; 13 : 1036–1047. [CrossRef] [PubMed] [Google Scholar]
- AbdulHameed MD, Chaudhury S, Singh N, et al. Exploring polypharmacology using a ROCS-based target fishing approach. J Chem Inf Model 2012 ; 52 : 492–505. [CrossRef] [PubMed] [Google Scholar]
- Cheng T, Li Q, Zhou Z, et al. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 2012 ; 14 : 133–141. [CrossRef] [PubMed] [Google Scholar]
- Ripphausen P, Nisius B, Bajorath J. State-of-the-art in ligand-based virtual screening. Drug Discov Today 2011 ; 16 : 372–376. [CrossRef] [PubMed] [Google Scholar]
- Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there?. Nat Rev Drug Discov 2006 ; 5 : 993–996. [Google Scholar]
- Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 2011 ; 10 : 579–590. [CrossRef] [PubMed] [Google Scholar]
- Venkatesan K, Rual J, Vazquez A, et al. An empirical framework for binary interactome mapping. Nat Methods 2009 ; 6 : 83–90. [CrossRef] [PubMed] [Google Scholar]
- Stumpf M, Thorne T, de Silva E, et al. Estimating the size of the human interactome. Proc Natl Acad Sci USA 2008 ; 105 : 6959–6964. [CrossRef] [Google Scholar]
- Mullard A. Protein-protein interaction inhibitors get into the groove. Nat Rev Drug Discov 2012 ; 11 : 173–175. [CrossRef] [PubMed] [Google Scholar]
- Labbé CM, Laconde G, Kuenemann MA, et al. iPPI-DB: a manually curated and interactive database of small non-peptide inhibitors of protein-protein interactions. Drug Discov Today 2013 ; 18 : 958–968. [CrossRef] [PubMed] [Google Scholar]
- Higueruelo AP, Jubb H, Blundell TL. TIMBAL v2: update of a database holding small molecules modulating protein-protein interactions. Database (Oxford) 2013; 2013 : bat039. [CrossRef] [PubMed] [Google Scholar]
- Higueruelo AP, Schreyer A, Bickerton GRJ, et al. Atomic interactions and profile of small molecules disrupting protein-protein interfaces: the TIMBAL database. Chem Biol Drug Design 2009 ; 74 : 457–467. [CrossRef] [Google Scholar]
- Basse MJ, Betzi S, Bourgeas R, et al. 2P2Idb: a structural database dedicated to orthosteric modulation of protein-protein interactions. Nucleic Acids Res 2013 ; 41 : D824–D827. [CrossRef] [PubMed] [Google Scholar]
- Bourgeas R, Basse MJ, Morelli X, Roche P. Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database. PLoS One 2010 ; 5 : e9598. [CrossRef] [PubMed] [Google Scholar]
- Hamon V, Morelli X. Druggability of protein-protein interactions. In: Understanding and exploiting protein-protein interactions as drug target. Future Science Ltd, 2013 : 18–31. [Google Scholar]
- Pérot S, Regad L, Reynès C, et al. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction. PLoS One 2013 ; 8 : e63730. [CrossRef] [PubMed] [Google Scholar]
- Pagliaro L, Felding J, Audouze K, et al. Emerging classes of protein-protein interaction inhibitors and new tools for their development. Curr Opin Chem Biol 2004 ; 8 : 442–449. [CrossRef] [PubMed] [Google Scholar]
- Reynes C, Host H, Camproux AC, et al. Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods. PLoS Comput Biol 2010 ; 6 : e1000695. [CrossRef] [PubMed] [Google Scholar]
- Sperandio O, Reynès C, Camproux A, Villoutreix B. Rationalizing the chemical space of protein-protein interaction inhibitors. Drug Discov Today 2010 ; 15 : 220–229. [CrossRef] [PubMed] [Google Scholar]
- Morelli X, Bourgeas R, Roche P. Chemical and structural lessons from recent successes in protein-protein interaction inhibition (2P2I). Curr Opin Chem Biol 2011 ; 15 : 475–481. [CrossRef] [PubMed] [Google Scholar]
- Akram ON, Degraff DJ, Sheehan JH, et al. Tailoring peptidomimetics for targeting protein-protein interactions. Mol Cancer Res 2014 ; 12 : 967–978. [CrossRef] [PubMed] [Google Scholar]
- Jayatunga MK, Thompson S, Hamilton AD. α-Helix mimetics: outwards and upwards. Bioorg Med Chem Lett 2014 ; 24 : 717–724. [CrossRef] [PubMed] [Google Scholar]
- Isvoran A, Craciun D, Martiny V, et al. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding. BMC Pharmacol Toxicol 2013 ; 14 : 31. [CrossRef] [PubMed] [Google Scholar]
- Villoutreix BO, Labbé CM, Lagorce D, et al. A leap into the chemical space of protein-protein interaction inhibitors. Curr Pharm Des 2012 ; 18 : 4648–4667. [CrossRef] [PubMed] [Google Scholar]
- Neugebauer A, Hartmann RW, Klein CD. Prediction of protein-protein interaction inhibitors by chemoinformatics and machine learning methods. J Med Chem 2007 ; 50 : 4665–4668. [CrossRef] [PubMed] [Google Scholar]
- Hamon V, Bourgeas R, Ducrot P, et al. 2P2I HUNTER: a tool for filtering orthosteric protein-protein interaction modulators via a dedicated support vector machine. J R Soc Interface 2014 ; 11 : 20130860. [CrossRef] [PubMed] [Google Scholar]
- Lagorce D, Sperandio O, Galons H, et al. FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics 2008 ; 9 : 396. [CrossRef] [PubMed] [Google Scholar]
- Lagorce D, Maupetit J, Baell J, et al. The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics 2011 ; 27 : 2018–2020. [CrossRef] [PubMed] [Google Scholar]
- Hamon V, Brunel JM, Combes S, et al. 2P2Ichem: focused chemical libraries dedicated to orthosteric modulation of protein-protein interactions. Med Chem Comm 2013 ; 4 : 797–809. [CrossRef] [Google Scholar]
- Fry DC, So SS. Modulators of protein-protein interactions: importance of three-dimensionality. In: Protein-protein interactions in drug discovery. Wiley-VCH Verlag GmbH and Co KGaA, 2013 : 55–62. [Google Scholar]
- Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 2009 ; 52 : 6752–6756. [CrossRef] [PubMed] [Google Scholar]
- Rognan D, Bonnet P. Les chimiothèques et le criblage virtuel. Med Sci (Paris) 2014 ; 30 : 1152–1160. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- le Krimm I. criblage de fragments : une voie prometteuse pour la conception de médicaments. Med Sci (Paris) 2015 ; 31 : 197–202. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Wong YS. Synthèse orientée vers la diversité structurale pour explorer le vivant. Med Sci (Paris) 2015 ; 31 : 93–97. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Kuenemann MA, Bourbon LM, Labbé CM, et al. Which three-dimensional characteristics make efficient inhibitors of protein-protein interactions?. J Chem Inf Model 2014 ; 54 : 3067–3079. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.