Chémobiologie
Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 3, Mars 2015
Chémobiologie
Page(s) 312 - 319
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153103017
Publié en ligne 8 avril 2015
  1. Lipinski C, Lombardo F, Dominy B, Feeney P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001 ; 46 : 3–26. [CrossRef] [PubMed]
  2. Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002 ; 45 : 2615–2623. [CrossRef] [PubMed]
  3. Oprea TI. Property distribution of drug-related chemical databases. J Comput Aided Mol Des 2000 ; 14 : 251–264. [CrossRef] [PubMed]
  4. Walters WP, Murcko MA. Prediction of drug-likeness. Adv Drug Deliv Rev 2002 ; 54 : 255–271. [CrossRef] [PubMed]
  5. Rishton GM. Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov Today 2003 ; 8 : 86–96. [CrossRef] [PubMed]
  6. Hughes JD, Blagg J, Price DA, et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 2008 ; 18 : 4872–4875. [CrossRef] [PubMed]
  7. Bickerton GR, Paolini GV, Besnard J, et al. Quantifying the chemical beauty of drugs. Nat Chem 2012 ; 4 : 90–98. [CrossRef]
  8. Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 2010 ; 53 : 2719–2740. [CrossRef] [PubMed]
  9. Gupta S. New drug development. In : Drug discovery and clinical research. Delhi, India : JayPee Brothers Medical Publishers Ltd, 2011 : 1–135.
  10. Sheppard DW, Lipkin MJ, Harris CJ, et al. Strategies for small molecule library design. Curr Pharm Des 2013 ; 19 : 1–9.
  11. Lipkin MJ, Stevens AP, Livingstone DJ, Harris CJ. How large does a compound screening collection need to be? Comb Chem High Throughput Screen 2008 ; 11 : 482–493. [CrossRef] [PubMed]
  12. Pirhadi S, Shiri F, Ghasemi JB. Methods and applications of structure based pharmacophores in drug discovery. Curr Top Med Chem 2013 ; 13 : 1036–1047. [CrossRef] [PubMed]
  13. AbdulHameed MD, Chaudhury S, Singh N, et al. Exploring polypharmacology using a ROCS-based target fishing approach. J Chem Inf Model 2012 ; 52 : 492–505. [CrossRef] [PubMed]
  14. Cheng T, Li Q, Zhou Z, et al. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 2012 ; 14 : 133–141. [CrossRef] [PubMed]
  15. Ripphausen P, Nisius B, Bajorath J. State-of-the-art in ligand-based virtual screening. Drug Discov Today 2011 ; 16 : 372–376. [CrossRef] [PubMed]
  16. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there?. Nat Rev Drug Discov 2006 ; 5 : 993–996. [CrossRef] [PubMed]
  17. Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 2011 ; 10 : 579–590. [CrossRef] [PubMed]
  18. Venkatesan K, Rual J, Vazquez A, et al. An empirical framework for binary interactome mapping. Nat Methods 2009 ; 6 : 83–90. [CrossRef] [PubMed]
  19. Stumpf M, Thorne T, de Silva E, et al. Estimating the size of the human interactome. Proc Natl Acad Sci USA 2008 ; 105 : 6959–6964. [CrossRef]
  20. Mullard A. Protein-protein interaction inhibitors get into the groove. Nat Rev Drug Discov 2012 ; 11 : 173–175. [CrossRef] [PubMed]
  21. Labbé CM, Laconde G, Kuenemann MA, et al. iPPI-DB: a manually curated and interactive database of small non-peptide inhibitors of protein-protein interactions. Drug Discov Today 2013 ; 18 : 958–968. [CrossRef] [PubMed]
  22. Higueruelo AP, Jubb H, Blundell TL. TIMBAL v2: update of a database holding small molecules modulating protein-protein interactions. Database (Oxford) 2013; 2013 : bat039. [CrossRef] [PubMed]
  23. Higueruelo AP, Schreyer A, Bickerton GRJ, et al. Atomic interactions and profile of small molecules disrupting protein-protein interfaces: the TIMBAL database. Chem Biol Drug Design 2009 ; 74 : 457–467. [CrossRef]
  24. Basse MJ, Betzi S, Bourgeas R, et al. 2P2Idb: a structural database dedicated to orthosteric modulation of protein-protein interactions. Nucleic Acids Res 2013 ; 41 : D824–D827. [CrossRef] [PubMed]
  25. Bourgeas R, Basse MJ, Morelli X, Roche P. Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database. PLoS One 2010 ; 5 : e9598. [CrossRef] [PubMed]
  26. Hamon V, Morelli X. Druggability of protein-protein interactions. In: Understanding and exploiting protein-protein interactions as drug target. Future Science Ltd, 2013 : 18–31.
  27. Pérot S, Regad L, Reynès C, et al. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction. PLoS One 2013 ; 8 : e63730. [CrossRef] [PubMed]
  28. Pagliaro L, Felding J, Audouze K, et al. Emerging classes of protein-protein interaction inhibitors and new tools for their development. Curr Opin Chem Biol 2004 ; 8 : 442–449. [CrossRef] [PubMed]
  29. Reynes C, Host H, Camproux AC, et al. Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods. PLoS Comput Biol 2010 ; 6 : e1000695. [CrossRef] [PubMed]
  30. Sperandio O, Reynès C, Camproux A, Villoutreix B. Rationalizing the chemical space of protein-protein interaction inhibitors. Drug Discov Today 2010 ; 15 : 220–229. [CrossRef] [PubMed]
  31. Morelli X, Bourgeas R, Roche P. Chemical and structural lessons from recent successes in protein-protein interaction inhibition (2P2I). Curr Opin Chem Biol 2011 ; 15 : 475–481. [CrossRef] [PubMed]
  32. Akram ON, Degraff DJ, Sheehan JH, et al. Tailoring peptidomimetics for targeting protein-protein interactions. Mol Cancer Res 2014 ; 12 : 967–978. [CrossRef] [PubMed]
  33. Jayatunga MK, Thompson S, Hamilton AD. α-Helix mimetics: outwards and upwards. Bioorg Med Chem Lett 2014 ; 24 : 717–724. [CrossRef] [PubMed]
  34. Isvoran A, Craciun D, Martiny V, et al. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding. BMC Pharmacol Toxicol 2013 ; 14 : 31. [CrossRef]
  35. Villoutreix BO, Labbé CM, Lagorce D, et al. A leap into the chemical space of protein-protein interaction inhibitors. Curr Pharm Des 2012 ; 18 : 4648–4667. [CrossRef] [PubMed]
  36. Neugebauer A, Hartmann RW, Klein CD. Prediction of protein-protein interaction inhibitors by chemoinformatics and machine learning methods. J Med Chem 2007 ; 50 : 4665–4668. [CrossRef] [PubMed]
  37. Hamon V, Bourgeas R, Ducrot P, et al. 2P2I HUNTER: a tool for filtering orthosteric protein-protein interaction modulators via a dedicated support vector machine. J R Soc Interface 2014 ; 11 : 20130860. [CrossRef] [PubMed]
  38. Lagorce D, Sperandio O, Galons H, et al. FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics 2008 ; 9 : 396. [CrossRef] [PubMed]
  39. Lagorce D, Maupetit J, Baell J, et al. The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics 2011 ; 27 : 2018–2020. [CrossRef] [PubMed]
  40. Hamon V, Brunel JM, Combes S, et al. 2P2Ichem: focused chemical libraries dedicated to orthosteric modulation of protein-protein interactions. Med Chem Comm 2013 ; 4 : 797–809. [CrossRef]
  41. Fry DC, So SS. Modulators of protein-protein interactions: importance of three-dimensionality. In: Protein-protein interactions in drug discovery. Wiley-VCH Verlag GmbH and Co KGaA, 2013 : 55–62.
  42. Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 2009 ; 52 : 6752–6756. [CrossRef] [PubMed]
  43. Rognan D, Bonnet P. Les chimiothèques et le criblage virtuel. Med Sci (Paris) 2014 ; 30 : 1152–1160. [CrossRef] [EDP Sciences] [PubMed]
  44. le Krimm I. criblage de fragments : une voie prometteuse pour la conception de médicaments. Med Sci (Paris) 2015 ; 31 : 197–202. [CrossRef] [EDP Sciences] [PubMed]
  45. Wong YS. Synthèse orientée vers la diversité structurale pour explorer le vivant. Med Sci (Paris) 2015 ; 31 : 93–97. [CrossRef] [EDP Sciences] [PubMed]
  46. Kuenemann MA, Bourbon LM, Labbé CM, et al. Which three-dimensional characteristics make efficient inhibitors of protein-protein interactions?. J Chem Inf Model 2014 ; 54 : 3067–3079. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.