Free Access
Issue
Med Sci (Paris)
Volume 31, Number 2, Février 2015
Page(s) 174 - 179
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153102014
Published online 04 March 2015
  1. Borgnia M, Nielsen S, Engel A, Agre P. Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 1999 ; 68 : 425–458. [CrossRef] [PubMed] [Google Scholar]
  2. Agre P. Aquaporin water channels (Nobel lecture). Angew Chem Int Ed Engl 2004 ; 43 : 4278–4290. [CrossRef] [PubMed] [Google Scholar]
  3. Bichet DG, Parent L, Sauvé R. Prix Nobel de Chimie 2003: canaux hydriques et ioniques. Med Sci (Paris) 2003 ; 19 : 1289–1290. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Guérin CF, Regli L, Badaut J. Rôles des aquaporines dans le cerveau. Med Sci (Paris) 2005 ; 21 : 747–752. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Murata K, Mitsuoka K, Hirai T, et al. Structural determinants of water permeation through aquaporin-1. Nature 2000 ; 407 : 599–605. [CrossRef] [PubMed] [Google Scholar]
  6. Sui H, Han BG, Lee JK, et al. Structural basis of water-specific transport through the AQP1 water channel. Nature 2001 ; 414 : 872–878. [CrossRef] [PubMed] [Google Scholar]
  7. Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces. Chem Soc Rev 2010 ; 39 : 1073–1095. [CrossRef] [PubMed] [Google Scholar]
  8. Majumder M, Chopra N, Andrews R, Hinds BJ. Nanoscale hydrodynamics. Enhanced flow in carbon nanotubes. Nature 2005 ; 438 : 44. [Google Scholar]
  9. Holt JK, Park HG, Wang YM, et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006 ; 312 : 1034–1037. [CrossRef] [PubMed] [Google Scholar]
  10. Cui Y, Bastien DA. Water transport in human aquaporin-4: molecular dynamics (MD) simulations. Biochem Biophys Res Commun 2011 ; 412 : 654–659. [CrossRef] [PubMed] [Google Scholar]
  11. De Groot BL, Grubmüller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 2001 ; 294 : 2353–2357. [CrossRef] [PubMed] [Google Scholar]
  12. Gravelle S, Joly L, Detcheverry F, et al. Optimizing water permeability through the hourglass shape of aquaporins. Proc Natl Acad Sci USA 2013 ; 110 : 2–7. [CrossRef] [Google Scholar]
  13. Bocquet L, J Barrat JL. Flow boundary conditions from nano- to micro-scales. Soft Matter 2007 ; 3 : 685–693. [CrossRef] [Google Scholar]
  14. Sampson RA. On stokes’s current function. Philos Trans A Math Phys Eng Sci 1891 ; 182 : 449–518. [CrossRef] [Google Scholar]
  15. Weissberg HL. End correction for slow viscous flow through long tubes. Phys Fluids 1962 ; 5 : 1033–1036. [CrossRef] [Google Scholar]
  16. Sisan TB, Lichter S. The end of nanochannels. Microfluid Nanofluidics 2011 ; 11 : 787–791. [CrossRef] [Google Scholar]
  17. Hashido M, Kidera A, Ikeguchi M. Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations. Biophys J 2007 ; 93 : 373–385. [CrossRef] [PubMed] [Google Scholar]
  18. Ho JD, Yeh R, Sandstrom A, et al. Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance. Proc Natl Acad Sci USA 2009; 106 : 7437–7442. [CrossRef] [Google Scholar]
  19. De Groot BL, Engel A, Grubmüller H. The structure of the aquaporin-1 water channel: a comparison between cryo-electron microscopy and Xray crystallography. J Mol Biol 2003 ; 325 : 485–493. [CrossRef] [PubMed] [Google Scholar]
  20. Harries WEC, Akhavan D, Miercke LJW, et al. The channel architecture of aquaporin 0 at a 2.2-Å resolution. Proc Natl Acad Sci USA 2004; 101 : 14045–14050. [CrossRef] [Google Scholar]
  21. Zhang YB, Chen LY. In silico study of aquaporin V: effects and affinity of the central pore-occluding lipid. Biophys Chem 2013 ; 171 : 24–30. [CrossRef] [PubMed] [Google Scholar]
  22. Jensen MØ, Mouritsen OG. Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF. Biophys J 2006 ; 90 : 2270–2284. [CrossRef] [PubMed] [Google Scholar]
  23. Fischer G, Kosinska-Eriksson U. Crystal structure of a yeast aquaporin at 1.15 Å reveals a novel gating mechanism. PLoS Biol 2009 ; 7 : e1000130. [CrossRef] [PubMed] [Google Scholar]
  24. Gravelle S, Joly L, Ybert C, Bocquet L. Large permeabilities of hourglass nanopores : from hydrodynamics to single file transport. J Chem Phys 2014 ; 141 : 18C526. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.