Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 2, Février 2015
Page(s) 174 - 179
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153102014
Publié en ligne 4 mars 2015
  1. Borgnia M, Nielsen S, Engel A, Agre P. Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 1999 ; 68 : 425–458. [CrossRef] [PubMed] [Google Scholar]
  2. Agre P. Aquaporin water channels (Nobel lecture). Angew Chem Int Ed Engl 2004 ; 43 : 4278–4290. [CrossRef] [PubMed] [Google Scholar]
  3. Bichet DG, Parent L, Sauvé R. Prix Nobel de Chimie 2003: canaux hydriques et ioniques. Med Sci (Paris) 2003 ; 19 : 1289–1290. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Guérin CF, Regli L, Badaut J. Rôles des aquaporines dans le cerveau. Med Sci (Paris) 2005 ; 21 : 747–752. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Murata K, Mitsuoka K, Hirai T, et al. Structural determinants of water permeation through aquaporin-1. Nature 2000 ; 407 : 599–605. [CrossRef] [PubMed] [Google Scholar]
  6. Sui H, Han BG, Lee JK, et al. Structural basis of water-specific transport through the AQP1 water channel. Nature 2001 ; 414 : 872–878. [CrossRef] [PubMed] [Google Scholar]
  7. Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces. Chem Soc Rev 2010 ; 39 : 1073–1095. [CrossRef] [PubMed] [Google Scholar]
  8. Majumder M, Chopra N, Andrews R, Hinds BJ. Nanoscale hydrodynamics. Enhanced flow in carbon nanotubes. Nature 2005 ; 438 : 44. [Google Scholar]
  9. Holt JK, Park HG, Wang YM, et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006 ; 312 : 1034–1037. [CrossRef] [PubMed] [Google Scholar]
  10. Cui Y, Bastien DA. Water transport in human aquaporin-4: molecular dynamics (MD) simulations. Biochem Biophys Res Commun 2011 ; 412 : 654–659. [CrossRef] [PubMed] [Google Scholar]
  11. De Groot BL, Grubmüller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 2001 ; 294 : 2353–2357. [CrossRef] [PubMed] [Google Scholar]
  12. Gravelle S, Joly L, Detcheverry F, et al. Optimizing water permeability through the hourglass shape of aquaporins. Proc Natl Acad Sci USA 2013 ; 110 : 2–7. [CrossRef] [Google Scholar]
  13. Bocquet L, J Barrat JL. Flow boundary conditions from nano- to micro-scales. Soft Matter 2007 ; 3 : 685–693. [CrossRef] [Google Scholar]
  14. Sampson RA. On stokes’s current function. Philos Trans A Math Phys Eng Sci 1891 ; 182 : 449–518. [CrossRef] [Google Scholar]
  15. Weissberg HL. End correction for slow viscous flow through long tubes. Phys Fluids 1962 ; 5 : 1033–1036. [CrossRef] [Google Scholar]
  16. Sisan TB, Lichter S. The end of nanochannels. Microfluid Nanofluidics 2011 ; 11 : 787–791. [CrossRef] [Google Scholar]
  17. Hashido M, Kidera A, Ikeguchi M. Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations. Biophys J 2007 ; 93 : 373–385. [CrossRef] [PubMed] [Google Scholar]
  18. Ho JD, Yeh R, Sandstrom A, et al. Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance. Proc Natl Acad Sci USA 2009; 106 : 7437–7442. [CrossRef] [Google Scholar]
  19. De Groot BL, Engel A, Grubmüller H. The structure of the aquaporin-1 water channel: a comparison between cryo-electron microscopy and Xray crystallography. J Mol Biol 2003 ; 325 : 485–493. [CrossRef] [PubMed] [Google Scholar]
  20. Harries WEC, Akhavan D, Miercke LJW, et al. The channel architecture of aquaporin 0 at a 2.2-Å resolution. Proc Natl Acad Sci USA 2004; 101 : 14045–14050. [CrossRef] [Google Scholar]
  21. Zhang YB, Chen LY. In silico study of aquaporin V: effects and affinity of the central pore-occluding lipid. Biophys Chem 2013 ; 171 : 24–30. [CrossRef] [PubMed] [Google Scholar]
  22. Jensen MØ, Mouritsen OG. Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF. Biophys J 2006 ; 90 : 2270–2284. [CrossRef] [PubMed] [Google Scholar]
  23. Fischer G, Kosinska-Eriksson U. Crystal structure of a yeast aquaporin at 1.15 Å reveals a novel gating mechanism. PLoS Biol 2009 ; 7 : e1000130. [CrossRef] [PubMed] [Google Scholar]
  24. Gravelle S, Joly L, Ybert C, Bocquet L. Large permeabilities of hourglass nanopores : from hydrodynamics to single file transport. J Chem Phys 2014 ; 141 : 18C526. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.