Free Access
Issue
Med Sci (Paris)
Volume 31, Number 2, Février 2015
Page(s) 180 - 186
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153102015
Published online 04 March 2015
  1. Brooks JD. Translational genomics: the challenge of developing cancer biomarkers. Genome Res 2012 ; 22 : 183–187. [CrossRef] [PubMed] [Google Scholar]
  2. Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l’homme. CR Séances Soc Biol Fil 1948 ; 142 : 241–243. [Google Scholar]
  3. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977 ; 37 : 646–650. [PubMed] [Google Scholar]
  4. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011 ; 11 : 426–437. [CrossRef] [PubMed] [Google Scholar]
  5. Gormally E, Caboux E, Vineis P, Hainaut P. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res 2007 ; 635 : 105–117. [CrossRef] [PubMed] [Google Scholar]
  6. Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001 ; 61 : 1659–1665. [PubMed] [Google Scholar]
  7. Van der Vaart M, Pretorius PJ. Is the role of circulating DNA as a biomarker of cancer being prematurely overrated? Clin Biochem 2010 ; 43 : 26–36. [CrossRef] [PubMed] [Google Scholar]
  8. Lo YMD, Zhang J, Leung TN, et al. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 1999 ; 64 : 218–224. [CrossRef] [PubMed] [Google Scholar]
  9. Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008 ; 14 : 985–990. [CrossRef] [PubMed] [Google Scholar]
  10. El Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: preanalytical considerations. Clin Chim Acta 2013 ; 424 : 222–230. [CrossRef] [PubMed] [Google Scholar]
  11. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 2013 ; 10 : 472–484. [CrossRef] [Google Scholar]
  12. Stroun M, Lyautey J, Lederrey C, et al. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 2001 ; 313 : 139–142. [CrossRef] [PubMed] [Google Scholar]
  13. Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012 ; 486 : 532–536. [CrossRef] [PubMed] [Google Scholar]
  14. Lecomte T, Berger A, Zinzindohoue F, et al. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer 2002 ; 100 : 542–548. [CrossRef] [PubMed] [Google Scholar]
  15. Robertson EG, Baxter G. Tumour seeding following percutaneous needle biopsy: the real story!. Clin Radiol 2011 ; 66 : 1007–1014. [CrossRef] [PubMed] [Google Scholar]
  16. Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature 2013 ; 501 : 355–364. [CrossRef] [PubMed] [Google Scholar]
  17. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012 ; 366 : 883–892. [CrossRef] [PubMed] [Google Scholar]
  18. Diehl F, Li M, Dressman D, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA 2005 ; 102 : 16368–16373. [CrossRef] [PubMed] [Google Scholar]
  19. Thierry AR, Mouliere F, El Messaoudi S, et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 2014 ; 20 : 430–435. [CrossRef] [PubMed] [Google Scholar]
  20. Taly V, Pekin D, Benhaim L, et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 2013 ; 59 : 1722–1731. [CrossRef] [PubMed] [Google Scholar]
  21. Taly V, Pekin D, El Abed A, Laurent-Puig P. Detecting biomarkers with microdroplet technology. Trends Mol Med 2012 ; 18 : 405–416. [CrossRef] [PubMed] [Google Scholar]
  22. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci USA 1999 ; 96 : 9236–9241. [CrossRef] [Google Scholar]
  23. Thierry AR, Mouliere F, Gongora C, et al. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res 2010 ; 38 : 6159–6175. [CrossRef] [PubMed] [Google Scholar]
  24. Didelot A, Kotsopoulos SK, Lupo A, et al. Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples. Clin Chem 2013 ; 59 : 815–823. [CrossRef] [PubMed] [Google Scholar]
  25. Oxnard GR, Paweletz CP, Kuang Y, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res 2014 ; 20 : 1698–1705. [CrossRef] [PubMed] [Google Scholar]
  26. Dawson SJ, Tsui DWY, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013 ; 368 : 1199–1209. [CrossRef] [PubMed] [Google Scholar]
  27. Gevensleben H, Garcia-Murillas I, Graeser MK, et al. Noninvasive detection of HER2 amplification with plasma DNA digital PCR. Clin Cancer Res 2013 ; 19 : 3276–3284. [CrossRef] [PubMed] [Google Scholar]
  28. Hindson BJ, Ness KD, Masquelier DA, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 2011 ; 83 : 8604–8610. [CrossRef] [PubMed] [Google Scholar]
  29. Pekin D, Skhiri Y, Baret JC, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 2011 ; 11 : 2156–2166. [CrossRef] [PubMed] [Google Scholar]
  30. Diaz LA Jr,Williams RT, Wu J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012 ; 486 : 537–540. [CrossRef] [PubMed] [Google Scholar]
  31. Yung TKF, Chan KCA, Mok TSK, et al. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res 2009 ; 15 : 2076–2084. [CrossRef] [PubMed] [Google Scholar]
  32. Kimura H, Kasahara K, Shibata K, et al. EGFR mutation of tumor and serum in gefitinib-treated patients with chemotherapy-naive non-small cell lung cancer. J Thorac Oncol 2006 ; 1 : 260–267. [Google Scholar]
  33. Taniguchi K, Uchida J, Nishino K, et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res 2011 ; 17 : 7808–7815. [CrossRef] [PubMed] [Google Scholar]
  34. Page K, Hava N, Ward B, et al. Detection of HER2 amplification in circulating free DNA in patients with breast cancer. Br J Cancer 2011 ; 104 : 1342–1348. [CrossRef] [PubMed] [Google Scholar]
  35. Moltzahn F, Olshen AB, Baehner L, et al. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res 2011 ; 71 : 550–560. [CrossRef] [PubMed] [Google Scholar]
  36. Ma J, Li N, Guarnera M, Jiang F. Quantification of plasma miRNAs by digital PCR for cancer diagnosis. Biomark Insights 2013 ; 8 : 127–136. [PubMed] [Google Scholar]
  37. Li M, Chen WD, Papadopoulos N, et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol 2009 ; 27 : 858–863. [CrossRef] [PubMed] [Google Scholar]
  38. Riethdorf S, Fritsche H, Muller V, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cell search system. Clin Cancer Res 2007 ; 13 : 920–928. [CrossRef] [PubMed] [Google Scholar]
  39. Pfitzner C, Schröder I, Scheungraber C, et al. Digital-direct-RT-PCR: a sensitive and specific method for quantification of CTC in patients with cervical carcinoma. Sci Rep 2014 ; 4 : 3970. [CrossRef] [PubMed] [Google Scholar]
  40. Sedlak RH, Jerome KR. Viral diagnostics in the era of digital polymerase chain reaction. Diagn Microbiol Infect Dis 2012 ; 75 : 1–4. [CrossRef] [PubMed] [Google Scholar]
  41. Lo YM, Chiu RW. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis. Clin Chem 2008 ; 54 : 461–466. [CrossRef] [PubMed] [Google Scholar]
  42. Baker M.. Digital PCR hits its stride. Nat Meth 2012 ; 9 : 541–544. [CrossRef] [Google Scholar]
  43. Perez-Toralla K, Pekin D, Bartolo JF, et al. PCR digitale en microcompartiments : détection sensible de séquences d’acides nucléiques rares. Med sci (Paris) 2015 : 84–92. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Bournet B, Dufresne M, Selves J, et al. Oncogène Kras et cancer du pancréas. Med Sci (Paris) 2013 ; 29 : 991–997. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.