Free Access
Med Sci (Paris)
Volume 31, Number 2, Février 2015
Page(s) 168 - 173
Section M/S Revues
Published online 04 March 2015
  1. Thorens B, Larsen PJ. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr Opin Clin Nutr Metab Care 2004 ; 7 : 471–478. [CrossRef] [PubMed] [Google Scholar]
  2. Andreelli F. L’AMP-activated protein kinase hypothalamique, régulateur essentiel du poids et de la prise alimentaire. Med Sci (Paris) 2005 ; 21 : 131–132. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Andreelli F, Foretz M, Knauf C, et al. Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 2006 ; 147 : 2432–2441. [CrossRef] [PubMed] [Google Scholar]
  4. Gutiérrez-Juárez R, Obici S, Rossetti L. Melanocortin-independent effects of leptin on hepatic glucose fluxes. J Biol Chem 2004 ; 279 : 49704–49715. [CrossRef] [PubMed] [Google Scholar]
  5. Berthoud HR. Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 2002 ; 26 : 393–428. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Duvernoy HM, Risold PY. The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev 2007 ; 56 : 119–147. [CrossRef] [PubMed] [Google Scholar]
  7. Guan JL, Saotome T, Wang QP, et al. Orexinergic innervation of POMC-containing neurons in the rat arcuate nucleus. Neuroreport 2001 ; 12 : 547–551. [CrossRef] [PubMed] [Google Scholar]
  8. Boston BA, Blaydon KM, Varnerin J, et al. Independent and additive effects of central POMC and leptin pathways on murine obesity. Science 1997 ; 278 : 1641–1644. [CrossRef] [PubMed] [Google Scholar]
  9. Adan RA, Cone RD, Burbach JP, et al. Differential effects of melanocortin peptides on neural melanocortin receptors. Mol Pharmacol 1994 ; 46 : 1182–1190. [PubMed] [Google Scholar]
  10. Ollmann MM, Wilson BD, Yang YK, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997 ; 278 : 135–138. [CrossRef] [PubMed] [Google Scholar]
  11. Blouet C.. Le rôle du noyau du tractus solitaire dans la détection et l’intégration de multiples signaux métaboliques. Med Sci (Paris) 2013 ; 29 : 449–452. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Williams DL, Kaplan JM, Grill HJ. The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation. Endocrinology 2000 ; 141 : 1332–1337. [PubMed] [Google Scholar]
  13. Uyama N, Geerts A, Reynaert H. Neural connections between the hypothalamus and the liver. Anat Rec A Discov Mol Cell Evol Biol 2004 ; 280 : 808–820. [CrossRef] [PubMed] [Google Scholar]
  14. Berthoud H-R. Anatomy and function of sensory hepatic nerves. Anat Rec A Discov Mol Cell Evol Biol 2004 ; 280 : 827–835. [CrossRef] [PubMed] [Google Scholar]
  15. Delaere F, Duchampt A, Mounien L, et al. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab 2012 ; 2 : 47–53. [CrossRef] [PubMed] [Google Scholar]
  16. Delaere F, Akaoka H, De Vadder F, et al. Portal glucose influences the sensory, cortical and reward systems in rats. Eur J Neurosci 2013 ; 38 : 3476–3486. [CrossRef] [PubMed] [Google Scholar]
  17. Delaere F, Magnan C, Mithieux G. Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity. Diabetes Metab 2010 ; 36 : 257–262. [CrossRef] [PubMed] [Google Scholar]
  18. Breen DM, Rasmussen BA, Kokorovic A, et al. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med 2012 ; 18 : 950–955. [CrossRef] [PubMed] [Google Scholar]
  19. Troy S, Soty M, Ribeiro L, et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab 2008 ; 8 : 201–211. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. Mithieux G, Misery P, Magnan C, et al. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab 2005 ; 2 : 321–329. [CrossRef] [PubMed] [Google Scholar]
  21. Baird JP, Grill HJ, Kaplan JM. Intake suppression after hepatic portal glucose infusion: all-or-none effect and its temporal threshold. Am J Physiol 1997 ; 272 : R1454–R1460. [PubMed] [Google Scholar]
  22. Saberi M, Bohland M, Donovan CM. The locus for hypoglycemic detection shifts with the rate of fall in glycemia: the role of portal-superior mesenteric vein glucose sensing. Diabetes 2008 ; 57 : 1380–1386. [CrossRef] [PubMed] [Google Scholar]
  23. Duraffourd C, De Vadder F, Goncalves D, et al. Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake. Cell 2012 ; 150 : 377–388. [CrossRef] [PubMed] [Google Scholar]
  24. De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014 ; 156 : 84–96. [CrossRef] [PubMed] [Google Scholar]
  25. Pillot B, Soty M, Gautier-Stein A, et al. Protein feeding promotes redistribution of endogenous glucose production to the kidney and potentiates its suppression by insulin. Endocrinology 2009 ; 150 : 616–624. [CrossRef] [PubMed] [Google Scholar]
  26. Minassian C, Mithieux G. Differential time course of liver and kidney glucose-6 phosphatase activity during fasting in rats. Comp Biochem Physiol B Biochem Mol Biol 1994 ; 109 : 99–104. [CrossRef] [PubMed] [Google Scholar]
  27. Daniele N, Rajas F, Payrastre B, et al. Phosphatidylinositol 3-kinase translocates onto liver endoplasmic reticulum and may account for the inhibition of glucose-6-phosphatase during refeeding. J Biol Chem 1999 ; 274 : 3597–3601. [CrossRef] [PubMed] [Google Scholar]
  28. Mithieux G, Vega FV, Riou JP. The liver glucose-6-phosphatase of intact microsomes is inhibited and displays sigmoid kinetics in the presence of alpha-ketoglutarate-magnesium and oxaloacetate-magnesium chelates. J Biol Chem 1990 ; 265 : 20364–20368. [PubMed] [Google Scholar]
  29. Mithieux G, Zitoun C. Mechanisms by which fatty-acyl-CoA esters inhibit or activate glucose-6-phosphatase in intact and detergent-treated rat liver microsomes. Eur J Biochem 1996 ; 235 : 799–803. [CrossRef] [PubMed] [Google Scholar]
  30. El Kaoutari A, Armougom F, Raoult D, Henrissat B. Le microbiote intestinal et la digestion des polysaccharides. Med Sci (Paris) 2014 ; 30 : 259–265. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. Balland E, Prévot V. Les tanycytes hypothalamiques, porte d’entrée de la leptine dans le cerveau. Med Sci (Paris) 2014 ; 30 : 624–627. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Mancini A, Poitout V. Les récepteurs membranaires des acides gras de la cellule β. Med Sci (Paris) 2013 ; 29 : 715–721. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.