Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 2, Février 2015
Page(s) 168 - 173
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153102013
Publié en ligne 4 mars 2015
  1. Thorens B, Larsen PJ. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr Opin Clin Nutr Metab Care 2004 ; 7 : 471–478. [CrossRef] [PubMed] [Google Scholar]
  2. Andreelli F. L’AMP-activated protein kinase hypothalamique, régulateur essentiel du poids et de la prise alimentaire. Med Sci (Paris) 2005 ; 21 : 131–132. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Andreelli F, Foretz M, Knauf C, et al. Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 2006 ; 147 : 2432–2441. [CrossRef] [PubMed] [Google Scholar]
  4. Gutiérrez-Juárez R, Obici S, Rossetti L. Melanocortin-independent effects of leptin on hepatic glucose fluxes. J Biol Chem 2004 ; 279 : 49704–49715. [CrossRef] [PubMed] [Google Scholar]
  5. Berthoud HR. Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 2002 ; 26 : 393–428. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Duvernoy HM, Risold PY. The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev 2007 ; 56 : 119–147. [CrossRef] [PubMed] [Google Scholar]
  7. Guan JL, Saotome T, Wang QP, et al. Orexinergic innervation of POMC-containing neurons in the rat arcuate nucleus. Neuroreport 2001 ; 12 : 547–551. [CrossRef] [PubMed] [Google Scholar]
  8. Boston BA, Blaydon KM, Varnerin J, et al. Independent and additive effects of central POMC and leptin pathways on murine obesity. Science 1997 ; 278 : 1641–1644. [CrossRef] [PubMed] [Google Scholar]
  9. Adan RA, Cone RD, Burbach JP, et al. Differential effects of melanocortin peptides on neural melanocortin receptors. Mol Pharmacol 1994 ; 46 : 1182–1190. [PubMed] [Google Scholar]
  10. Ollmann MM, Wilson BD, Yang YK, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997 ; 278 : 135–138. [CrossRef] [PubMed] [Google Scholar]
  11. Blouet C.. Le rôle du noyau du tractus solitaire dans la détection et l’intégration de multiples signaux métaboliques. Med Sci (Paris) 2013 ; 29 : 449–452. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Williams DL, Kaplan JM, Grill HJ. The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation. Endocrinology 2000 ; 141 : 1332–1337. [PubMed] [Google Scholar]
  13. Uyama N, Geerts A, Reynaert H. Neural connections between the hypothalamus and the liver. Anat Rec A Discov Mol Cell Evol Biol 2004 ; 280 : 808–820. [CrossRef] [PubMed] [Google Scholar]
  14. Berthoud H-R. Anatomy and function of sensory hepatic nerves. Anat Rec A Discov Mol Cell Evol Biol 2004 ; 280 : 827–835. [CrossRef] [PubMed] [Google Scholar]
  15. Delaere F, Duchampt A, Mounien L, et al. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab 2012 ; 2 : 47–53. [CrossRef] [PubMed] [Google Scholar]
  16. Delaere F, Akaoka H, De Vadder F, et al. Portal glucose influences the sensory, cortical and reward systems in rats. Eur J Neurosci 2013 ; 38 : 3476–3486. [CrossRef] [PubMed] [Google Scholar]
  17. Delaere F, Magnan C, Mithieux G. Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity. Diabetes Metab 2010 ; 36 : 257–262. [CrossRef] [PubMed] [Google Scholar]
  18. Breen DM, Rasmussen BA, Kokorovic A, et al. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med 2012 ; 18 : 950–955. [CrossRef] [PubMed] [Google Scholar]
  19. Troy S, Soty M, Ribeiro L, et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab 2008 ; 8 : 201–211. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. Mithieux G, Misery P, Magnan C, et al. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab 2005 ; 2 : 321–329. [CrossRef] [PubMed] [Google Scholar]
  21. Baird JP, Grill HJ, Kaplan JM. Intake suppression after hepatic portal glucose infusion: all-or-none effect and its temporal threshold. Am J Physiol 1997 ; 272 : R1454–R1460. [PubMed] [Google Scholar]
  22. Saberi M, Bohland M, Donovan CM. The locus for hypoglycemic detection shifts with the rate of fall in glycemia: the role of portal-superior mesenteric vein glucose sensing. Diabetes 2008 ; 57 : 1380–1386. [CrossRef] [PubMed] [Google Scholar]
  23. Duraffourd C, De Vadder F, Goncalves D, et al. Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake. Cell 2012 ; 150 : 377–388. [CrossRef] [PubMed] [Google Scholar]
  24. De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014 ; 156 : 84–96. [CrossRef] [PubMed] [Google Scholar]
  25. Pillot B, Soty M, Gautier-Stein A, et al. Protein feeding promotes redistribution of endogenous glucose production to the kidney and potentiates its suppression by insulin. Endocrinology 2009 ; 150 : 616–624. [CrossRef] [PubMed] [Google Scholar]
  26. Minassian C, Mithieux G. Differential time course of liver and kidney glucose-6 phosphatase activity during fasting in rats. Comp Biochem Physiol B Biochem Mol Biol 1994 ; 109 : 99–104. [CrossRef] [PubMed] [Google Scholar]
  27. Daniele N, Rajas F, Payrastre B, et al. Phosphatidylinositol 3-kinase translocates onto liver endoplasmic reticulum and may account for the inhibition of glucose-6-phosphatase during refeeding. J Biol Chem 1999 ; 274 : 3597–3601. [CrossRef] [PubMed] [Google Scholar]
  28. Mithieux G, Vega FV, Riou JP. The liver glucose-6-phosphatase of intact microsomes is inhibited and displays sigmoid kinetics in the presence of alpha-ketoglutarate-magnesium and oxaloacetate-magnesium chelates. J Biol Chem 1990 ; 265 : 20364–20368. [PubMed] [Google Scholar]
  29. Mithieux G, Zitoun C. Mechanisms by which fatty-acyl-CoA esters inhibit or activate glucose-6-phosphatase in intact and detergent-treated rat liver microsomes. Eur J Biochem 1996 ; 235 : 799–803. [CrossRef] [PubMed] [Google Scholar]
  30. El Kaoutari A, Armougom F, Raoult D, Henrissat B. Le microbiote intestinal et la digestion des polysaccharides. Med Sci (Paris) 2014 ; 30 : 259–265. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. Balland E, Prévot V. Les tanycytes hypothalamiques, porte d’entrée de la leptine dans le cerveau. Med Sci (Paris) 2014 ; 30 : 624–627. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Mancini A, Poitout V. Les récepteurs membranaires des acides gras de la cellule β. Med Sci (Paris) 2013 ; 29 : 715–721. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.