Free Access
Med Sci (Paris)
Volume 31, Number 2, Février 2015
Page(s) 159 - 167
Section M/S Revues
Published online 04 March 2015
  1. Walker FO. Huntington’s disease. Lancet 2007 ; 369 : 218–228. [CrossRef] [PubMed] [Google Scholar]
  2. The Huntington’s disease collaborative research group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993 ; 72 : 971–983. [CrossRef] [PubMed] [Google Scholar]
  3. Youssov K, Dolbeau G, Maison P, et al. Unified Huntington’s disease rating scale for advanced patients: validation and follow-up study. Mov Disord 2013 ; 28 : 1717–1723. [CrossRef] [PubMed] [Google Scholar]
  4. Vonsattel JP, Myers RH, Stevens TJ, et al. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 1985 ; 44 : 559–577. [CrossRef] [PubMed] [Google Scholar]
  5. Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 2011 ; 10 : 83–98. [CrossRef] [PubMed] [Google Scholar]
  6. Saudou F, Humbert S. La cystéamine rétablit les dynamiques intracellulaires et la sécrétion du BDNF dans la maladie de Huntington. Med Sci (Paris) 2006 ; 22 : 906–908. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Bloch J, Bachoud-Levi AC, Deglon N, et al. Neuroprotective gene therapy for Huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther 2004 ; 15 : 968–975. [CrossRef] [PubMed] [Google Scholar]
  8. Bachoud-Levi AC, Gaura V, Brugieres P, et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 2006 ; 5 : 303–309. [CrossRef] [PubMed] [Google Scholar]
  9. Southwell AL, Skotte NH, Bennett CF, Hayden MR. Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases. Trends Mol Med 2012 ; 18 : 634–643. [CrossRef] [PubMed] [Google Scholar]
  10. Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol 2012 ; 19 : 937–954. [CrossRef] [PubMed] [Google Scholar]
  11. Yu D, Pendergraff H, Liu J, et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell 2012 ; 150 : 895–908. [CrossRef] [PubMed] [Google Scholar]
  12. Boudreau RL, Davidson BL. RNAi therapeutics for CNS disorders. Brain Res 2010 ; 1338 : 112–121. [CrossRef] [PubMed] [Google Scholar]
  13. Shin KJ, Wall EA, Zavzavadjian JR, et al. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc Natl Acad Sci USA 2006 ; 103 : 13759–13764. [CrossRef] [Google Scholar]
  14. Wang YL, Liu W, Wada E, et al. Clinico-pathological rescue of a model mouse of Huntington’s disease by siRNA. Neurosci Res 2005 ; 53 : 241–249. [CrossRef] [PubMed] [Google Scholar]
  15. DiFiglia M, Sena-Esteves M, Chase K, et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 2007 ; 104 : 17204–17209. [CrossRef] [Google Scholar]
  16. Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001 ; 7 : 33–40. [CrossRef] [PubMed] [Google Scholar]
  17. Lentz TB, Gray SJ, Samulski RJ. Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 2012 ; 48 : 179–188. [CrossRef] [PubMed] [Google Scholar]
  18. Zhang Y, Friedlander RM. Using non-coding small RNAs to develop therapies for Huntington’s disease. Gene Ther 2011 ; 18 : 1139–1149. [CrossRef] [PubMed] [Google Scholar]
  19. Crook ZR, Housman D. Huntington’s disease: can mice lead the way to treatment? Neuron 2011 ; 69 : 423–435. [CrossRef] [PubMed] [Google Scholar]
  20. Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 2012 ; 74 : 1031–1044. [CrossRef] [PubMed] [Google Scholar]
  21. Davidson BL. Taking a break from huntingtin. Mol Ther Nucleic Acids 2012; 1; doi: 10.1038/mtna. [CrossRef] [Google Scholar]
  22. Harper SQ, Staber PD, He X, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci USA 2005 ; 102 : 5820–5825. [CrossRef] [Google Scholar]
  23. Rodriguez-Lebron E, Denovan-Wright EM, Nash K, et al. Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther 2005 ; 12 : 618–633. [CrossRef] [PubMed] [Google Scholar]
  24. Boudreau RL, McBride JL, Martins I, et al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 2009 ; 17 : 1053–1063. [CrossRef] [PubMed] [Google Scholar]
  25. Stanek LM, Sardi SP, Mastis B, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther 2014 ; 25 : 461–474. [CrossRef] [PubMed] [Google Scholar]
  26. Franich NR, Fitzsimons HL, Fong DM, et al. AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol Ther 2008 ; 16 : 947–956. [CrossRef] [PubMed] [Google Scholar]
  27. Drouet V, Perrin V, Hassig R, et al. Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol 2009 ; 65 : 276–285. [CrossRef] [PubMed] [Google Scholar]
  28. McBride JL, Pitzer MR, Boudreau RL, et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther 2011 ; 19 : 2152–2162. [CrossRef] [PubMed] [Google Scholar]
  29. Pfister EL, Kennington L, Straubhaar J, et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol 2009 ; 19 : 774–778. [CrossRef] [PubMed] [Google Scholar]
  30. Lombardi MS, Jaspers L, Spronkmans C, et al. A majority of Huntington’s disease patients may be treatable by individualized allele-specific RNA interference. Exp Neurol 2009 ; 217 : 312–319. [CrossRef] [PubMed] [Google Scholar]
  31. Sah DW, Aronin N. Oligonucleotide therapeutic approaches for Huntington disease. J Clin Invest 2011 ; 121 : 500–507. [CrossRef] [PubMed] [Google Scholar]
  32. Ostergaard ME, Southwell AL, Kordasiewicz H, et al. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res 2013 ; 41 : 9634–9650. [CrossRef] [PubMed] [Google Scholar]
  33. Drouet V, Ruiz M, Zala D, et al. Allele-specific silencing of mutant huntingtin in rodent brain and human stem cells. PloS One 2014 ; 9 : e99341. [CrossRef] [PubMed] [Google Scholar]
  34. Naito Y, Yoshimura J, Morishita S, Ui-Tei K. siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 2009; 10 : 392. [CrossRef] [PubMed] [Google Scholar]
  35. Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006 ; 441 : 537–541. [CrossRef] [PubMed] [Google Scholar]
  36. Judge AD, Sood V, Shaw JR, et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005 ; 23 : 457–462. [CrossRef] [PubMed] [Google Scholar]
  37. Davidson BL, Boudreau RL. RNA interference: a tool for querying nervous system function and an emerging therapy. Neuron 2007 ; 53 : 781–788. [CrossRef] [PubMed] [Google Scholar]
  38. Gosselet F, Candela P, Cecchelli R, et al. La barrière hémato-encéphalique. Med Sci (Paris) 2011 ; 27 : 987–992. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Lebre AS, Brice A. Maladies par expansion de polyglutamine : données moléculaires et physiopathologiques. Med Sci (Paris) 2001 ; 17 : 1149–1157. [CrossRef] [EDP Sciences] [Google Scholar]
  40. Aubry L, Peschanski M, Perrier A. Des cellules souches embryonnaires humaines pour la thérapie cellulaire de la maladie de Huntington. Med Sci (Paris) 2009 ; 25 : 333–335. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Harel-Bellan A.. Prix Nobel de médecine 2006: Andrew Z. Fire et Craig C. Mello. Silence, on désactive les gènes. Med Sci (Paris) 2006 ; 22 : 993–994. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Dunoyer P. La bataille du silence. Med Sci (Paris) 2009 ; 25 : 505–512. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Adams D, Lozeron P, Algalarrondo V. Utilisation de l’ARN interférence dans le traitement de l’amylose héréditaire due à une mutation de la transthyrétine. Med Sci (Paris) 2014 ; 30 : 345–347. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.