Free Access
Issue
Med Sci (Paris)
Volume 30, Number 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 962 - 967
Section Cils primaires et ciliopathies
DOI https://doi.org/10.1051/medsci/20143011009
Published online 10 November 2014
  1. Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol 2007 ; 69 : 377–400. [CrossRef] [PubMed] [Google Scholar]
  2. Barnes BG. Ciliated secretory cells in the pars distalis of the mouse hypophysis. J Ultrastruct Res 1961 ; 5 : 453–467. [CrossRef] [PubMed] [Google Scholar]
  3. Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 2000 ; 151 : 709–718. [CrossRef] [PubMed] [Google Scholar]
  4. Sorokin SP. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 1968 ; 3 : 207–230. [PubMed] [Google Scholar]
  5. Benmerah A. The ciliary pocket. Curr Opin Cell Biol 2013 ; 25 : 78–84. [CrossRef] [PubMed] [Google Scholar]
  6. Sorokin S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol 1962 ; 15 : 363–377. [CrossRef] [PubMed] [Google Scholar]
  7. Park TJ, Mitchell BJ, Abitua PB, et al. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 2008 ; 40 : 871–879. [CrossRef] [PubMed] [Google Scholar]
  8. Anderson RG. The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol 1972 ; 54 : 246–265. [CrossRef] [PubMed] [Google Scholar]
  9. Ye X, Zeng H, Ning G, et al. C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proc Natl Acad Sci USA 2014 ; 111 : 2164–2169. [CrossRef] [Google Scholar]
  10. Tateishi K, Yamazaki Y, Nishida T, et al. Two appendages homologous between basal bodies and centrioles are formed using distinct Odf2 domains. J Cell Biol 2013 ; 203 : 417–425. [CrossRef] [PubMed] [Google Scholar]
  11. Tanos BE, Yang H-J, Soni R, et al. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev 2013 ; 27 : 163–168. [CrossRef] [PubMed] [Google Scholar]
  12. Graser S, Stierhof YD, Lavoie SB, et al. Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol 2007 ; 179 : 321–330. [CrossRef] [PubMed] [Google Scholar]
  13. Joo K, Kim CG, Lee MS, et al. CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc Natl Acad Sci USA 2013 ; 110 : 5987–5992. [CrossRef] [Google Scholar]
  14. Sillibourne JE, Hurbain I, Grand-Perret T, et al. Primary ciliogenesis requires the distal appendage component Cep123. Biol Open 2013 ; 2 : 535–545. [CrossRef] [PubMed] [Google Scholar]
  15. Wei Q, Xu Q, Zhang Y, et al. Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes. Nat Commun 2013 ; 4 : 2750. [PubMed] [Google Scholar]
  16. Chaki M, Airik R, Ghosh AK, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 2012 ; 150 : 533–548. [CrossRef] [PubMed] [Google Scholar]
  17. Adly N, Alhashem A, Ammari A, Alkuraya FS. Ciliary genes TBC1D32/C6orf170 and SCLT1 are mutated in patients with OFD type IX. Hum Mutat 2014 ; 35 : 36–40. [CrossRef] [PubMed] [Google Scholar]
  18. Failler M, Gee HY, Krug P, et al. Mutations of CEP83 cause infantile nephronophthisis and intellectual disability. Am J Hum Genet 2014 ; 94 : 905–914. [CrossRef] [PubMed] [Google Scholar]
  19. Peränen J. Rab8 GTPase as a regulator of cell shape. Cytoskelet Hoboken NJ 2011 ; 68 : 527–539. [CrossRef] [Google Scholar]
  20. Nachury MV, Loktev AV, Zhang Q, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 2007 ; 129 : 1201–1213. [CrossRef] [PubMed] [Google Scholar]
  21. Schmidt KN, Kuhns S, Neuner A, et al. Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol 2012 ; 199 : 1083–1101. [CrossRef] [PubMed] [Google Scholar]
  22. Westlake CJ, Baye LM, Nachury MV, et al. Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci USA 2011 ; 108 : 2759–2764. [CrossRef] [Google Scholar]
  23. Kim J, Lee JE, Heynen-Genel S, et al. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 2010 ; 464 : 1048–1051. [CrossRef] [PubMed] [Google Scholar]
  24. Follit JA, Tuft RA, Fogarty KE, Pazour GJ. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol Biol Cell 2006 ; 17 : 3781–3792. [CrossRef] [PubMed] [Google Scholar]
  25. Finetti F, Paccani SR, Riparbelli MG, et al. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat Cell Biol 2009 ; 11 : 1332–1339. [CrossRef] [PubMed] [Google Scholar]
  26. Omori Y, Zhao C, Saras A, et al. Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol 2008 ; 10 : 437–444. [CrossRef] [PubMed] [Google Scholar]
  27. Feng S, Knödler A, Ren J, et al. A Rab8 guanine nucleotide exchange factor-effector interaction network regulates primary ciliogenesis. J Biol Chem 2012 ; 287 : 15602–15609. [CrossRef] [PubMed] [Google Scholar]
  28. Zuo X, Guo W, Lipschutz JH. The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol Biol Cell 2009 ; 20 : 2522–2529. [CrossRef] [PubMed] [Google Scholar]
  29. Gonçalves J, Nolasco S, Nascimento R, et al. TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Rep 2010 ; 11 : 194–200. [CrossRef] [PubMed] [Google Scholar]
  30. Poole CA, Flint MH, Beaumont BW. Analysis of the morphology and function of primary cilia in connective tissues: a cellular cybernetic probe? Cell Motil 1985 ; 5 : 175–193. [CrossRef] [PubMed] [Google Scholar]
  31. Ghossoub R, Molla-Herman A, Bastin P, Benmerah A. The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol Cell 2011 ; 103 : 131–144. [CrossRef] [PubMed] [Google Scholar]
  32. Pitaval A, Tseng Q, Bornens M, Théry M. Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J Cell Biol 2010 ; 191 : 303–312. [CrossRef] [PubMed] [Google Scholar]
  33. Clement CA, Ajbro KD, Koefoed K, et al. TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep 2013 ; 3 : 1806–1814. [CrossRef] [PubMed] [Google Scholar]
  34. Mahjoub MR, Stearns T. Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr Biol CB 2012 ; 22 : 1628–1634. [CrossRef] [Google Scholar]
  35. Paridaen JTML, Wilsch-Bräuninger M, Huttner WB. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell 2013 ; 155 : 333–344. [CrossRef] [PubMed] [Google Scholar]
  36. Fort C, Bastin P. Élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [Google Scholar]
  37. Diguet N, Meilhac SM. Cils et morphogenèse cardiaque. Med Sci (Paris) 2014 ; 30 : 996–1003. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Ezan J, Montcouquiol M. Les liens multiples entre les cils et la polarité planaire cellulaire. Med Sci (Paris) 2014 ; 30 : 1004–1010. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Paces-Fessy M. Cils et kystes rénaux. Med Sci (Paris) 2014 ; 30 : 1024–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Chennen K, Scerbo MJ, Dollfus H, et al. BBS : cils et obésité ; de la génétique à l’approche intégrative. Med Sci (Paris) 2014 ; 30 : 1034–1039. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.