Free Access
Med Sci (Paris)
Volume 30, Number 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 955 - 961
Section Cils primaires et ciliopathies
Published online 10 November 2014
  1. Bloodgood RA. From central to rudimentary to primary: the history of an underappreciated organelle whose time has come. The primary cilium. Methods Cell Biol 2009 ; 94 : 3–52. [PubMed] [Google Scholar]
  2. Kohl L, Bastin P. The flagellum of trypanosomes. Int Rev Cytol 2005 ; 224 : 227–285. [CrossRef] [PubMed] [Google Scholar]
  3. Broadhead R, Dawe HR, Farr H, et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 2006 ; 440 : 224–227. [CrossRef] [PubMed] [Google Scholar]
  4. Pazour GJ, Agrin N, Leszyk J, Witman GB. Proteomic analysis of a eukaryotic cilium. J Cell Biol 2005 ; 170 : 103–113. [CrossRef] [PubMed] [Google Scholar]
  5. Ostrowski LE, Blackburn K, Radde KM, et al. A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 2002 ; 1 : 451–465. [CrossRef] [PubMed] [Google Scholar]
  6. Beisson J, Wright M. Basal body/centriole assembly and continuity. Curr Opin Cell Biol 2003 ; 15 : 96–104. [CrossRef] [PubMed] [Google Scholar]
  7. Deane JA, Cole DG, Seeley ES, et al. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr Biol 2001 ; 11 : 1586–1590. [CrossRef] [PubMed] [Google Scholar]
  8. Gilula NB, Satir P. The ciliary necklace. A ciliary membrane specialization. J Cell Biol 1972 ; 53 : 494–509. [CrossRef] [PubMed] [Google Scholar]
  9. Hu Q, Milenkovic L, Jin H, et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 2010 ; 329 : 436–439. [CrossRef] [PubMed] [Google Scholar]
  10. Rosenbaum JL, Moulder JE, Ringo DL. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol 1969 ; 41 : 600–619. [CrossRef] [PubMed] [Google Scholar]
  11. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA 1993 ; 90 : 5519–5523. [CrossRef] [Google Scholar]
  12. Pigino G, Geimer S, Lanzavecchia S, et al. Electron-tomographic analysis of intraflagellar transport particle trains in situ. J Cell Biol 2009 ; 187 : 135–148. [CrossRef] [PubMed] [Google Scholar]
  13. Kozminski KG, Beech PL, Rosenbaum JL. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol 1995 ; 131 : 1517–1527. [CrossRef] [PubMed] [Google Scholar]
  14. Pazour GJ, Wilkerson CG, Witman GB. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J Cell Biol 1998 ; 141 : 979–992. [CrossRef] [PubMed] [Google Scholar]
  15. Signor D, Wedaman KP, Orozco JT, et al. Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol 1999 ; 147 : 519–530. [CrossRef] [PubMed] [Google Scholar]
  16. Cole DG, Diener DR, Himelblau AL, et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 1998 ; 141 : 993–1008. [CrossRef] [PubMed] [Google Scholar]
  17. Piperno G, Mead K. Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci USA 1997 ; 94 : 4457–4462. [CrossRef] [Google Scholar]
  18. Taschner M, Bhogaraju S, Lorentzen E. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 2012 ; 83 : S12–S22. [CrossRef] [PubMed] [Google Scholar]
  19. Orozco JT, Wedaman KP, Signor D, et al. Movement of motor, cargo along cilia. Nature 1999 ; 398 : 674. [CrossRef] [PubMed] [Google Scholar]
  20. Brown JM, Marsala C, Kosoy R, Gaertig J. Kinesin-II is preferentially targeted to assembling cilia and is required for ciliogenesis and normal cytokinesis in Tetrahymena. Mol Biol Cell 1999 ; 10 : 3081–3096. [CrossRef] [PubMed] [Google Scholar]
  21. Absalon S, Blisnick T, Kohl L, et al. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell 2008 ; 19 : 929–944. [CrossRef] [PubMed] [Google Scholar]
  22. Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J Cell Biol 2000 ; 151 : 709–718. [CrossRef] [PubMed] [Google Scholar]
  23. Follit JA, Tuft RA, Fogarty KE, Pazour GJ. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol Biol Cell 2006 ; 17 : 3781–3792. [CrossRef] [PubMed] [Google Scholar]
  24. Buisson J, Chenouard N, Lagache T, et al. Intraflagellar transport proteins cycle between the flagellum and its base. J Cell Sci 2013 ; 126 : 327–338. [CrossRef] [PubMed] [Google Scholar]
  25. Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998 ; 95 : 829–837. [CrossRef] [PubMed] [Google Scholar]
  26. Kohl L, Robinson D, Bastin P. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO J 2003 ; 22 : 5336–5346. [CrossRef] [PubMed] [Google Scholar]
  27. Bhogaraju S, Cajanek L, Fort C, et al. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 2013 ; 341 : 1009–1012. [CrossRef] [PubMed] [Google Scholar]
  28. Marshall WF, Rosenbaum JL. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol 2001 ; 155 : 405–414. [CrossRef] [PubMed] [Google Scholar]
  29. Dentler W. Intraflagellar transport (IFT) during assembly and disassembly of Chlamydomonas flagella. J Cell Biol 2005 ; 170 : 649–659. [CrossRef] [PubMed] [Google Scholar]
  30. Engel BD, Ludington WB, Marshall WF. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol 2009 ; 187 : 81–89. [CrossRef] [PubMed] [Google Scholar]
  31. Wren KN, Craft JM, Tritschler D, et al. A differential cargo-loading model of ciliary length regulation by IFT. Curr Biol 2013 ; 23 : 2463–2471. [CrossRef] [PubMed] [Google Scholar]
  32. Besschetnova TY, Kolpakova-Hart E, Guan Y, et al. Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr Biol 2010 ; 20 : 182–187. [CrossRef] [PubMed] [Google Scholar]
  33. Pan J, Snell WJ. Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading. Dev Cell 2005 ; 9 : 431–438. [CrossRef] [PubMed] [Google Scholar]
  34. Cao M, Meng D, Wang L, et al. Activation loop phosphorylation of a protein kinase is a molecular marker of organelle size that dynamically reports flagellar length. Proc Natl Acad Sci USA 2013 ; 110 : 12337–12342. [CrossRef] [Google Scholar]
  35. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med 2011 ; 364 : 1533–1543. [CrossRef] [PubMed] [Google Scholar]
  36. Pazour GJ, San Agustin JT, Follit JA, et al. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 2002 ; 12 : R378–R380. [CrossRef] [PubMed] [Google Scholar]
  37. Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003 ; 426 : 83–87. [CrossRef] [PubMed] [Google Scholar]
  38. Walczak-Sztulpa J, Eggenschwiler J, Osborn D, et al. Cranioectodermal dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet 2010 ; 86 : 949–956. [CrossRef] [PubMed] [Google Scholar]
  39. Perrault I, Saunier S, Hanein S, et al. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet 2012 ; 90 : 864–870. [CrossRef] [PubMed] [Google Scholar]
  40. Vincensini L, Blisnick T, Bastin P. 1001 model organisms to study cilia and flagella. Biol Cell 2011 ; 103 : 109–130. [CrossRef] [PubMed] [Google Scholar]
  41. Buisson J, Bastin P. Flagellum structure and function in trypanosomes. Microbiol Monogr 2010 ; 17 : 63–86. [CrossRef] [Google Scholar]
  42. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Chennen K, Scerbo MJ, Dollfus H, et al. Syndrome de Bardet-Biedl : cils et obésité. De la génétique à l’approche intégrative. Med Sci (Paris) 2014 ; 30 : 1034–1039. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.