Free Access
Med Sci (Paris)
Volume 30, Number 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 968 - 975
Section Cils primaires et ciliopathies
Published online 10 November 2014
  1. Choksi SP, Lauter G, Swoboda P, et al. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014 ; 141 : 1427–1441. [CrossRef] [PubMed] [Google Scholar]
  2. Scholey JM. Intraflagellar transport motors in cilia: moving along the cell’s antenna. J Cell Biol 2008 ; 180 : 23–29. [CrossRef] [PubMed] [Google Scholar]
  3. Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol 2007 ; 69 : 377–400. [CrossRef] [PubMed] [Google Scholar]
  4. Sulik K, Dehart DB, Iangaki T, et al. Morphogenesis of the murine node and notochordal plate. Dev Dyn 1994 ; 201 : 260–278. [CrossRef] [PubMed] [Google Scholar]
  5. Lidow MS, Menco BP. Observations on axonemes and membranes of olfactory and respiratory cilia in frogs and rats using tannic acid-supplemented fixation and photographic rotation. J Ultrastruct Res 1984 ; 86 : 18–30. [CrossRef] [PubMed] [Google Scholar]
  6. Sobkowicz HM, Slapnick SM, August BK. The kinocilium of auditory hair cells and evidence for its morphogenetic role during the regeneration of stereocilia and cuticular plates. J Neurocytol 1995 ; 24 : 633–653. [CrossRef] [PubMed] [Google Scholar]
  7. Chu JSC, Baillie DL, Chen N., Convergent evolution of RFX transcription factors, ciliary genes predated the origin of metazoans. BMC Evol Biol 2010 ; 10 : 130. [CrossRef] [PubMed] [Google Scholar]
  8. Swoboda P, Adler HT, Thomas JH. The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol Cell 2000 ; 5 : 411–421. [CrossRef] [PubMed] [Google Scholar]
  9. Dubruille R, Laurençon A, Vandaele C, et al. Drosophila regulatory factor X is necessary for ciliated sensory neuron differentiation. Development 2002 ; 129 : 5487–5498. [CrossRef] [PubMed] [Google Scholar]
  10. Bonnafe E, Touka M, AitLounis A, et al. The transcription factor RFX3 directs nodal cilium development and left-right asymmetry specification. Mol Cell Biol 2004 ; 24 : 4417–4427. [CrossRef] [PubMed] [Google Scholar]
  11. Ait-Lounis A, Baas D, Barras E, et al. Novel function of the ciliogenic transcription factor RFX3 in development of the endocrine pancreas. Diabetes 2007 ; 56 : 950–959. [CrossRef] [PubMed] [Google Scholar]
  12. Zein L El, Ait-Lounis A, Morlé L, et al. RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. J Cell Sci 2009 ; 122 : 3180–3189. [CrossRef] [PubMed] [Google Scholar]
  13. Baas D, Meiniel A, Benadiba C, et al. A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur J Neurosci 2006 ; 24 : 1020–1030. [CrossRef] [PubMed] [Google Scholar]
  14. Ashique AM, Choe Y, Karlen M, et al. The Rfx4 transcription factor modulates Shh signaling by regional control of ciliogenesis. Sci Signal 2009 ; 2 : ra70. [CrossRef] [PubMed] [Google Scholar]
  15. Bisgrove BW, Makova S, Yost HJ, et al. RFX2 is essential in the ciliated organ of asymmetry and an RFX2 transgene identifies a population of ciliated cells sufficient for fluid flow. Dev Biol 2012 ; 363 : 166–178. [CrossRef] [PubMed] [Google Scholar]
  16. Chung MI, Peyrot SM, LeBoeuf S, et al. RFX2 is broadly required for ciliogenesis during vertebrate development. Dev Biol 2012 ; 363 : 155–165. [CrossRef] [PubMed] [Google Scholar]
  17. Chung MI, Kwon T, Tu F, et al. Coordinated genomic control of ciliogenesis, cell movement by RFX2. Elife 2014 ; 3 : e01439. [CrossRef] [PubMed] [Google Scholar]
  18. Manojlovic Z, Earwood R, Kato A, et al. RFX7 is required for the formation of cilia in the neural tube. Mech Dev 2014 ; 132 : 28–37. [CrossRef] [PubMed] [Google Scholar]
  19. Jerber J, Thomas J, Durand B. Contrôle transcriptionnel de la ciliogenèse au cours du développement animal. Biol Aujourdhui 2012 ; 206 : 205–218. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Blackshear PJ, Graves JP, Stumpo DJ, et al. Graded phenotypic response to partial and complete deficiency of a brain-specific transcript variant of the winged helix transcription factor RFX4. Development 2003 ; 130 : 4539–4552. [CrossRef] [PubMed] [Google Scholar]
  21. Kistler WS, Horvath GC, Dasgupta A, et al. Differential expression of Rfx1–4 during mouse spermatogenesis. Gene Expr Patterns 2009 ; 9 : 515–519. [CrossRef] [PubMed] [Google Scholar]
  22. Vij S, Rink JC, Ho HK, et al. Evolutionarily ancient association of the FoxJ1 transcription factor with the motile ciliogenic program. PLoS Genet 2012 ; 8 : e1003019. [CrossRef] [PubMed] [Google Scholar]
  23. Newton FG, zur Lage PI, Karak S, et al. Forkhead transcription factor Fd3F cooperates with Rfx to regulate a gene expression program for mechanosensory cilia specialization. Dev Cell 2012 ; 22 : 1221–1233. [CrossRef] [PubMed] [Google Scholar]
  24. Alten L, Schuster-Gossler K, Beckers A, et al. Differential regulation of node formation, nodal ciliogenesis and cilia positioning by Noto and Foxj1. Development 2012 ; 139 : 1276–1284. [CrossRef] [PubMed] [Google Scholar]
  25. Brody SL, Yan XH, Wuerffel MK, et al. Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am J Respir Cell Mol Biol 2000 ; 23 : 45–51. [CrossRef] [PubMed] [Google Scholar]
  26. Yu X, Ng CP, Habacher H, et al. Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet 2008 ; 40 : 1445–1453. [CrossRef] [PubMed] [Google Scholar]
  27. Stubbs JL, Oishi I, Izpisúa Belmonte JC, et al. The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat Genet 2008 ; 40 : 1454–1460. [CrossRef] [PubMed] [Google Scholar]
  28. Hagenlocher C, Walentek P, M Ller C, et al. Ciliogenesis, cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. Cilia 2013 ; 2 : 12. [CrossRef] [PubMed] [Google Scholar]
  29. Horani A, Ferkol TW, Shoseyov D, et al. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One 2013 ; 8 : e59436. [CrossRef] [PubMed] [Google Scholar]
  30. You Y, Huang T, Richer EJ, et al. Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004 ; 286 : L650–L657. [CrossRef] [PubMed] [Google Scholar]
  31. Laurençon A, Dubruille R, Efimenko E, et al. Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species. Genome Biol 2007 ; 8 : R195. [CrossRef] [PubMed] [Google Scholar]
  32. Didon L, Zwick RK, Chao IW, et al. RFX3 modulation of FOXJ1 regulation of cilia genes in the human airway epithelium. Respir Res 2013 ; 14 : 70. [CrossRef] [PubMed] [Google Scholar]
  33. Cruz C, Ribes V, Kutejova E, et al. Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling. Development 2010 ; 137 : 4271–4282. [CrossRef] [PubMed] [Google Scholar]
  34. Ravasi T, Suzuki H, Cannistraci CV, et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 2010 ; 140 : 744–752. [CrossRef] [PubMed] [Google Scholar]
  35. Cachero S, Simpson TI, Lage PI Zur, et al. The gene regulatory cascade linking proneural specification with differentiation in Drosophila sensory neurons. PLoS Biol 2011 ; 9 : e1000568. [CrossRef] [PubMed] [Google Scholar]
  36. Burghoorn J, Piasecki BP, Crona F, et al. The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box. Dev Biol 2012 ; 368 : 415–426. [CrossRef] [PubMed] [Google Scholar]
  37. Mukhopadhyay S, Lu Y, Qin H, et al. Distinct IFT mechanisms contribute to the generation of ciliary structural diversity in C. elegans. EMBO J 2007 ; 26 : 2966–2980. [CrossRef] [PubMed] [Google Scholar]
  38. Gresh L, Fischer E, Reimann A, et al. A transcriptional network in polycystic kidney disease. EMBO J 2004 ; 23 : 1657–1668. [CrossRef] [PubMed] [Google Scholar]
  39. Tan FE, Vladar EK, Ma L, et al. Myb promotes centriole amplification and later steps of the multiciliogenesis program. Development 2013 ; 140 : 4277–4286. [CrossRef] [PubMed] [Google Scholar]
  40. Chen N, Mah A, Blacque OE, et al. Identification of ciliary, ciliopathy genes in Caenorhabditis elegans through comparative genomics. Genome Biol 2006 ; 7 : R126. [CrossRef] [PubMed] [Google Scholar]
  41. Efimenko E, Bubb K, Mak HY, et al. Analysis of xbx genes in C. elegans. Development 2005 ; 132 : 1923–1934. [CrossRef] [PubMed] [Google Scholar]
  42. Thomas J, Morlé L, Soulavie F, et al. Transcriptional control of genes involved in ciliogenesis: a first step in making cilia. Biol Cell 2010 ; 102 : 499–513. [CrossRef] [PubMed] [Google Scholar]
  43. Jerber J, Baas D, Soulavie F, et al. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals. Hum Mol Genet 2014 ; 23 : 563–577. [CrossRef] [PubMed] [Google Scholar]
  44. Enjolras C, Thomas J, Chhin B, et al. Drosophila chibby is required for basal body formation and ciliogenesis but not for Wg signaling. J Cell Biol 2012 ; 197 : 313–325. [CrossRef] [PubMed] [Google Scholar]
  45. Voronina V, Takemaru KI, Treuting P, et al. Inactivation of Chibby affects function of motile airway cilia. J Cell Biol 2009 ; 185 : 225–233. [CrossRef] [PubMed] [Google Scholar]
  46. Moore DJ, Onoufriadis A, Shoemark A, et al. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet 2013 ; 93 : 346–356. [CrossRef] [PubMed] [Google Scholar]
  47. Liu Y, Pathak N, Kramer-Zucker A, et al. Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 2007 ; 134 : 1111–1122. [CrossRef] [PubMed] [Google Scholar]
  48. Fort C, Bastin P. Élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [Google Scholar]
  49. Diguet N, Meilhac SM. Cils et morphogenèse cardiaque. Med Sci (Paris) 2014 ; 30 : 996–1003. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Ezan J, Montcouquiol M. Les liens multiples entre les cils et la polarité planaire cellulaire. Med Sci (Paris) 2014 ; 30 : 1004–1010. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Benmerah A. La poche ciliaire : fruit des liaisons du centrosome avec le trafic vésiculaire. Med Sci (Paris) 2014 ; 30 : 962–967. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.