Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 968 - 975
Section Cils primaires et ciliopathies
DOI https://doi.org/10.1051/medsci/20143011010
Publié en ligne 10 novembre 2014
  1. Choksi SP, Lauter G, Swoboda P, et al. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014 ; 141 : 1427–1441. [CrossRef] [PubMed]
  2. Scholey JM. Intraflagellar transport motors in cilia: moving along the cell’s antenna. J Cell Biol 2008 ; 180 : 23–29. [CrossRef] [PubMed]
  3. Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol 2007 ; 69 : 377–400. [CrossRef] [PubMed]
  4. Sulik K, Dehart DB, Iangaki T, et al. Morphogenesis of the murine node and notochordal plate. Dev Dyn 1994 ; 201 : 260–278. [CrossRef] [PubMed]
  5. Lidow MS, Menco BP. Observations on axonemes and membranes of olfactory and respiratory cilia in frogs and rats using tannic acid-supplemented fixation and photographic rotation. J Ultrastruct Res 1984 ; 86 : 18–30. [CrossRef] [PubMed]
  6. Sobkowicz HM, Slapnick SM, August BK. The kinocilium of auditory hair cells and evidence for its morphogenetic role during the regeneration of stereocilia and cuticular plates. J Neurocytol 1995 ; 24 : 633–653. [CrossRef] [PubMed]
  7. Chu JSC, Baillie DL, Chen N., Convergent evolution of RFX transcription factors, ciliary genes predated the origin of metazoans. BMC Evol Biol 2010 ; 10 : 130. [CrossRef] [PubMed]
  8. Swoboda P, Adler HT, Thomas JH. The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol Cell 2000 ; 5 : 411–421. [CrossRef] [PubMed]
  9. Dubruille R, Laurençon A, Vandaele C, et al. Drosophila regulatory factor X is necessary for ciliated sensory neuron differentiation. Development 2002 ; 129 : 5487–5498. [CrossRef] [PubMed]
  10. Bonnafe E, Touka M, AitLounis A, et al. The transcription factor RFX3 directs nodal cilium development and left-right asymmetry specification. Mol Cell Biol 2004 ; 24 : 4417–4427. [CrossRef] [PubMed]
  11. Ait-Lounis A, Baas D, Barras E, et al. Novel function of the ciliogenic transcription factor RFX3 in development of the endocrine pancreas. Diabetes 2007 ; 56 : 950–959. [CrossRef] [PubMed]
  12. Zein L El, Ait-Lounis A, Morlé L, et al. RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. J Cell Sci 2009 ; 122 : 3180–3189. [CrossRef] [PubMed]
  13. Baas D, Meiniel A, Benadiba C, et al. A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur J Neurosci 2006 ; 24 : 1020–1030. [CrossRef] [PubMed]
  14. Ashique AM, Choe Y, Karlen M, et al. The Rfx4 transcription factor modulates Shh signaling by regional control of ciliogenesis. Sci Signal 2009 ; 2 : ra70. [CrossRef] [PubMed]
  15. Bisgrove BW, Makova S, Yost HJ, et al. RFX2 is essential in the ciliated organ of asymmetry and an RFX2 transgene identifies a population of ciliated cells sufficient for fluid flow. Dev Biol 2012 ; 363 : 166–178. [CrossRef] [PubMed]
  16. Chung MI, Peyrot SM, LeBoeuf S, et al. RFX2 is broadly required for ciliogenesis during vertebrate development. Dev Biol 2012 ; 363 : 155–165. [CrossRef] [PubMed]
  17. Chung MI, Kwon T, Tu F, et al. Coordinated genomic control of ciliogenesis, cell movement by RFX2. Elife 2014 ; 3 : e01439. [CrossRef] [PubMed]
  18. Manojlovic Z, Earwood R, Kato A, et al. RFX7 is required for the formation of cilia in the neural tube. Mech Dev 2014 ; 132 : 28–37. [CrossRef] [PubMed]
  19. Jerber J, Thomas J, Durand B. Contrôle transcriptionnel de la ciliogenèse au cours du développement animal. Biol Aujourdhui 2012 ; 206 : 205–218. [CrossRef] [EDP Sciences] [PubMed]
  20. Blackshear PJ, Graves JP, Stumpo DJ, et al. Graded phenotypic response to partial and complete deficiency of a brain-specific transcript variant of the winged helix transcription factor RFX4. Development 2003 ; 130 : 4539–4552. [CrossRef] [PubMed]
  21. Kistler WS, Horvath GC, Dasgupta A, et al. Differential expression of Rfx1–4 during mouse spermatogenesis. Gene Expr Patterns 2009 ; 9 : 515–519. [CrossRef] [PubMed]
  22. Vij S, Rink JC, Ho HK, et al. Evolutionarily ancient association of the FoxJ1 transcription factor with the motile ciliogenic program. PLoS Genet 2012 ; 8 : e1003019. [CrossRef] [PubMed]
  23. Newton FG, zur Lage PI, Karak S, et al. Forkhead transcription factor Fd3F cooperates with Rfx to regulate a gene expression program for mechanosensory cilia specialization. Dev Cell 2012 ; 22 : 1221–1233. [CrossRef] [PubMed]
  24. Alten L, Schuster-Gossler K, Beckers A, et al. Differential regulation of node formation, nodal ciliogenesis and cilia positioning by Noto and Foxj1. Development 2012 ; 139 : 1276–1284. [CrossRef] [PubMed]
  25. Brody SL, Yan XH, Wuerffel MK, et al. Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am J Respir Cell Mol Biol 2000 ; 23 : 45–51. [CrossRef] [PubMed]
  26. Yu X, Ng CP, Habacher H, et al. Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet 2008 ; 40 : 1445–1453. [CrossRef] [PubMed]
  27. Stubbs JL, Oishi I, Izpisúa Belmonte JC, et al. The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat Genet 2008 ; 40 : 1454–1460. [CrossRef] [PubMed]
  28. Hagenlocher C, Walentek P, M Ller C, et al. Ciliogenesis, cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. Cilia 2013 ; 2 : 12. [CrossRef] [PubMed]
  29. Horani A, Ferkol TW, Shoseyov D, et al. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One 2013 ; 8 : e59436. [CrossRef] [PubMed]
  30. You Y, Huang T, Richer EJ, et al. Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004 ; 286 : L650–L657. [CrossRef] [PubMed]
  31. Laurençon A, Dubruille R, Efimenko E, et al. Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species. Genome Biol 2007 ; 8 : R195. [CrossRef] [PubMed]
  32. Didon L, Zwick RK, Chao IW, et al. RFX3 modulation of FOXJ1 regulation of cilia genes in the human airway epithelium. Respir Res 2013 ; 14 : 70. [CrossRef] [PubMed]
  33. Cruz C, Ribes V, Kutejova E, et al. Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling. Development 2010 ; 137 : 4271–4282. [CrossRef] [PubMed]
  34. Ravasi T, Suzuki H, Cannistraci CV, et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 2010 ; 140 : 744–752. [CrossRef] [PubMed]
  35. Cachero S, Simpson TI, Lage PI Zur, et al. The gene regulatory cascade linking proneural specification with differentiation in Drosophila sensory neurons. PLoS Biol 2011 ; 9 : e1000568. [CrossRef] [PubMed]
  36. Burghoorn J, Piasecki BP, Crona F, et al. The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box. Dev Biol 2012 ; 368 : 415–426. [CrossRef] [PubMed]
  37. Mukhopadhyay S, Lu Y, Qin H, et al. Distinct IFT mechanisms contribute to the generation of ciliary structural diversity in C. elegans. EMBO J 2007 ; 26 : 2966–2980. [CrossRef] [PubMed]
  38. Gresh L, Fischer E, Reimann A, et al. A transcriptional network in polycystic kidney disease. EMBO J 2004 ; 23 : 1657–1668. [CrossRef] [PubMed]
  39. Tan FE, Vladar EK, Ma L, et al. Myb promotes centriole amplification and later steps of the multiciliogenesis program. Development 2013 ; 140 : 4277–4286. [CrossRef] [PubMed]
  40. Chen N, Mah A, Blacque OE, et al. Identification of ciliary, ciliopathy genes in Caenorhabditis elegans through comparative genomics. Genome Biol 2006 ; 7 : R126. [CrossRef] [PubMed]
  41. Efimenko E, Bubb K, Mak HY, et al. Analysis of xbx genes in C. elegans. Development 2005 ; 132 : 1923–1934. [CrossRef] [PubMed]
  42. Thomas J, Morlé L, Soulavie F, et al. Transcriptional control of genes involved in ciliogenesis: a first step in making cilia. Biol Cell 2010 ; 102 : 499–513. [CrossRef] [PubMed]
  43. Jerber J, Baas D, Soulavie F, et al. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals. Hum Mol Genet 2014 ; 23 : 563–577. [CrossRef] [PubMed]
  44. Enjolras C, Thomas J, Chhin B, et al. Drosophila chibby is required for basal body formation and ciliogenesis but not for Wg signaling. J Cell Biol 2012 ; 197 : 313–325. [CrossRef] [PubMed]
  45. Voronina V, Takemaru KI, Treuting P, et al. Inactivation of Chibby affects function of motile airway cilia. J Cell Biol 2009 ; 185 : 225–233. [CrossRef] [PubMed]
  46. Moore DJ, Onoufriadis A, Shoemark A, et al. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet 2013 ; 93 : 346–356. [CrossRef] [PubMed]
  47. Liu Y, Pathak N, Kramer-Zucker A, et al. Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 2007 ; 134 : 1111–1122. [CrossRef] [PubMed]
  48. Fort C, Bastin P. Élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [CrossRef] [EDP Sciences] [PubMed]
  49. Diguet N, Meilhac SM. Cils et morphogenèse cardiaque. Med Sci (Paris) 2014 ; 30 : 996–1003. [CrossRef] [EDP Sciences] [PubMed]
  50. Ezan J, Montcouquiol M. Les liens multiples entre les cils et la polarité planaire cellulaire. Med Sci (Paris) 2014 ; 30 : 1004–1010. [CrossRef] [EDP Sciences] [PubMed]
  51. Benmerah A. La poche ciliaire : fruit des liaisons du centrosome avec le trafic vésiculaire. Med Sci (Paris) 2014 ; 30 : 962–967. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.