Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 11, Novembre 2014
Cils primaires et ciliopathies
Page(s) 962 - 967
Section Cils primaires et ciliopathies
DOI https://doi.org/10.1051/medsci/20143011009
Publié en ligne 10 novembre 2014
  1. Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol 2007 ; 69 : 377–400. [CrossRef] [PubMed]
  2. Barnes BG. Ciliated secretory cells in the pars distalis of the mouse hypophysis. J Ultrastruct Res 1961 ; 5 : 453–467. [CrossRef] [PubMed]
  3. Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 2000 ; 151 : 709–718. [CrossRef] [PubMed]
  4. Sorokin SP. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 1968 ; 3 : 207–230. [PubMed]
  5. Benmerah A. The ciliary pocket. Curr Opin Cell Biol 2013 ; 25 : 78–84. [CrossRef] [PubMed]
  6. Sorokin S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol 1962 ; 15 : 363–377. [CrossRef] [PubMed]
  7. Park TJ, Mitchell BJ, Abitua PB, et al. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 2008 ; 40 : 871–879. [CrossRef] [PubMed]
  8. Anderson RG. The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol 1972 ; 54 : 246–265. [CrossRef] [PubMed]
  9. Ye X, Zeng H, Ning G, et al. C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proc Natl Acad Sci USA 2014 ; 111 : 2164–2169. [CrossRef]
  10. Tateishi K, Yamazaki Y, Nishida T, et al. Two appendages homologous between basal bodies and centrioles are formed using distinct Odf2 domains. J Cell Biol 2013 ; 203 : 417–425. [CrossRef] [PubMed]
  11. Tanos BE, Yang H-J, Soni R, et al. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev 2013 ; 27 : 163–168. [CrossRef] [PubMed]
  12. Graser S, Stierhof YD, Lavoie SB, et al. Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol 2007 ; 179 : 321–330. [CrossRef] [PubMed]
  13. Joo K, Kim CG, Lee MS, et al. CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc Natl Acad Sci USA 2013 ; 110 : 5987–5992. [CrossRef]
  14. Sillibourne JE, Hurbain I, Grand-Perret T, et al. Primary ciliogenesis requires the distal appendage component Cep123. Biol Open 2013 ; 2 : 535–545. [CrossRef] [PubMed]
  15. Wei Q, Xu Q, Zhang Y, et al. Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes. Nat Commun 2013 ; 4 : 2750. [PubMed]
  16. Chaki M, Airik R, Ghosh AK, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 2012 ; 150 : 533–548. [CrossRef] [PubMed]
  17. Adly N, Alhashem A, Ammari A, Alkuraya FS. Ciliary genes TBC1D32/C6orf170 and SCLT1 are mutated in patients with OFD type IX. Hum Mutat 2014 ; 35 : 36–40. [CrossRef] [PubMed]
  18. Failler M, Gee HY, Krug P, et al. Mutations of CEP83 cause infantile nephronophthisis and intellectual disability. Am J Hum Genet 2014 ; 94 : 905–914. [CrossRef] [PubMed]
  19. Peränen J. Rab8 GTPase as a regulator of cell shape. Cytoskelet Hoboken NJ 2011 ; 68 : 527–539. [CrossRef]
  20. Nachury MV, Loktev AV, Zhang Q, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 2007 ; 129 : 1201–1213. [CrossRef] [PubMed]
  21. Schmidt KN, Kuhns S, Neuner A, et al. Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol 2012 ; 199 : 1083–1101. [CrossRef] [PubMed]
  22. Westlake CJ, Baye LM, Nachury MV, et al. Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci USA 2011 ; 108 : 2759–2764. [CrossRef]
  23. Kim J, Lee JE, Heynen-Genel S, et al. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 2010 ; 464 : 1048–1051. [CrossRef] [PubMed]
  24. Follit JA, Tuft RA, Fogarty KE, Pazour GJ. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol Biol Cell 2006 ; 17 : 3781–3792. [CrossRef] [PubMed]
  25. Finetti F, Paccani SR, Riparbelli MG, et al. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat Cell Biol 2009 ; 11 : 1332–1339. [CrossRef] [PubMed]
  26. Omori Y, Zhao C, Saras A, et al. Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol 2008 ; 10 : 437–444. [CrossRef] [PubMed]
  27. Feng S, Knödler A, Ren J, et al. A Rab8 guanine nucleotide exchange factor-effector interaction network regulates primary ciliogenesis. J Biol Chem 2012 ; 287 : 15602–15609. [CrossRef] [PubMed]
  28. Zuo X, Guo W, Lipschutz JH. The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol Biol Cell 2009 ; 20 : 2522–2529. [CrossRef] [PubMed]
  29. Gonçalves J, Nolasco S, Nascimento R, et al. TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Rep 2010 ; 11 : 194–200. [CrossRef] [PubMed]
  30. Poole CA, Flint MH, Beaumont BW. Analysis of the morphology and function of primary cilia in connective tissues: a cellular cybernetic probe? Cell Motil 1985 ; 5 : 175–193. [CrossRef] [PubMed]
  31. Ghossoub R, Molla-Herman A, Bastin P, Benmerah A. The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol Cell 2011 ; 103 : 131–144. [CrossRef] [PubMed]
  32. Pitaval A, Tseng Q, Bornens M, Théry M. Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J Cell Biol 2010 ; 191 : 303–312. [CrossRef] [PubMed]
  33. Clement CA, Ajbro KD, Koefoed K, et al. TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep 2013 ; 3 : 1806–1814. [CrossRef] [PubMed]
  34. Mahjoub MR, Stearns T. Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr Biol CB 2012 ; 22 : 1628–1634. [CrossRef]
  35. Paridaen JTML, Wilsch-Bräuninger M, Huttner WB. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell 2013 ; 155 : 333–344. [CrossRef] [PubMed]
  36. Fort C, Bastin P. Élongation de l’axonème et dynamique du transport intraflagellaire. Med Sci (Paris) 2014 ; 30 : 955–961. [CrossRef] [EDP Sciences] [PubMed]
  37. Diguet N, Meilhac SM. Cils et morphogenèse cardiaque. Med Sci (Paris) 2014 ; 30 : 996–1003. [CrossRef] [EDP Sciences] [PubMed]
  38. Ezan J, Montcouquiol M. Les liens multiples entre les cils et la polarité planaire cellulaire. Med Sci (Paris) 2014 ; 30 : 1004–1010. [CrossRef] [EDP Sciences] [PubMed]
  39. Paces-Fessy M. Cils et kystes rénaux. Med Sci (Paris) 2014 ; 30 : 1024–1033. [CrossRef] [EDP Sciences] [PubMed]
  40. Bachmann-Gagescu R. Complexité génétique des ciliopathies et identification de nouveaux gènes. Med Sci (Paris) 2014 ; 30 : 1011–1023. [CrossRef] [EDP Sciences] [PubMed]
  41. Chennen K, Scerbo MJ, Dollfus H, et al. BBS : cils et obésité ; de la génétique à l’approche intégrative. Med Sci (Paris) 2014 ; 30 : 1034–1039. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.