Free Access
Med Sci (Paris)
Volume 30, Number 5, Mai 2014
Page(s) 537 - 543
Section M/S Revues
Published online 13 June 2014
  1. Fournier G, Garrido-Urbani S, Reymond N, Lopez M. Nectines et nectines-like - Marqueurs, acteurs et cibles de l’oncogenèse. Med Sci (Paris) 2010 ; 26 : 273–279. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 2008 ; 9 : 603–615. [CrossRef] [PubMed] [Google Scholar]
  3. Muhlebach MD, Mateo M, Sinn PL, et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011 ; 480 : 530–533. [PubMed] [Google Scholar]
  4. Rikitake Y, Mandai K, Takai Y. The role of nectins in different types of cell-cell adhesion. J Cell Sci 2012 ; 125 : 3713–3722. [CrossRef] [PubMed] [Google Scholar]
  5. Chan CJ, Andrews DM, Smyth MJ. Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Curr Opin Immunol 2012 ; 24 : 246–251. [CrossRef] [PubMed] [Google Scholar]
  6. Fuchs A, Colonna M. The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin Cancer Biol 2006 ; 16 : 359–366. [CrossRef] [PubMed] [Google Scholar]
  7. Pavlova NN, Pallasch C, Elia AE, et al. A role for PVRL4-driven cell-cell interactions in tumorigenesis. Elife 2013 ; 2 : e00358. [CrossRef] [PubMed] [Google Scholar]
  8. Mateo M, Lopez M. Nectine-4, une protéine clé pour la transmission du virus de la rougeole. Med Sci (Paris) 2012 ; 28 : 363–365. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Tran YK, Bogler O, Gorse KM, et al. A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res 1999 ; 59 : 35–43. [PubMed] [Google Scholar]
  10. Murakami Y. Involvement of a cell adhesion molecule, TSLC1/IGSF4, in human oncogenesis. Cancer Sci 2005 ; 96 : 543–552. [CrossRef] [PubMed] [Google Scholar]
  11. Dewan MZ, Takamatsu N, Hidaka T, et al. Critical role for TSLC1 expression in the growth and organ infiltration of adult T-cell leukemia cells in vivo. J Virol 2008 ; 82 : 11958–11963. [CrossRef] [PubMed] [Google Scholar]
  12. Nakahata S, Morishita K. CADM1/TSLC1 is a novel cell surface marker for adult T-cell leukemia/lymphoma. J Clin Exp Hematop 2012 ; 52 : 17–22. [CrossRef] [PubMed] [Google Scholar]
  13. Fabre-Lafay S, Garrido-Urbani S, Reymond N, et al. Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM-17. J Biol Chem 2005 ; 280 : 19543–19550. [CrossRef] [PubMed] [Google Scholar]
  14. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012 ; 21 : 309–322. [CrossRef] [PubMed] [Google Scholar]
  15. Catros-Quemener V, Bouet F, Genetet N. Immunité antitumorale et thérapies cellulaires du cancer. Med Sci (Paris) 2003 ; 19 : 43–53. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Narni-Mancinelli E, Ugolini S, Vivier E. Les cellules natural killer - Adaptation et mémoire dans le système immunitaire inné. Med Sci (Paris) 2013 ; 29 : 389–395. [Google Scholar]
  17. Catros V, Toutirais O, Bouet F, et al. Lymphocytes Tγδ en cancérologie - Des lymphocytes tueurs non conventionnels. Med Sci (Paris) 2010 ; 26 : 185–191. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol 2013 ; 13 : 88–100. [CrossRef] [PubMed] [Google Scholar]
  19. Harly C, Guillaume Y, Nedellec S, et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gammadelta T-cell subset. Blood 2012 ; 120 : 2269–2279. [CrossRef] [PubMed] [Google Scholar]
  20. Vavassori S, Kumar A, Wan GS, et al. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human gammadelta T cells. Nat Immunol 2013 ; 14 : 908–916. [CrossRef] [PubMed] [Google Scholar]
  21. Bouet-Toussaint F, Cabillic F, Toutirais O, et al. V 9V 2 T cells-mediated recognition of human solid tumors. Potential for immunotherapy of hepatocellular and colorectal carcinomas. Cancer Immunol Immunother 2008 ; 57 : 531–539. [CrossRef] [PubMed] [Google Scholar]
  22. Thedrez A, Lavoue V, Dessarthe B, et al. A quantitative deficiency in peripheral blood Vgamma9Vdelta2 cells is a negative prognostic biomarker in ovarian cancer patients. PLoS One 2013 ; 8 : e63322. [CrossRef] [PubMed] [Google Scholar]
  23. Lavoue V, Cabillic F, Toutirais O, et al. Sensitization of ovarian carcinoma cells with zoledronate restores the cytotoxic capacity of Vgamma9Vdelta2 T cells impaired by the prostaglandin E2 immunosuppressive factor: implications for immunotherapy. Int J Cancer 2012 ; 131 : E449–E462. [CrossRef] [PubMed] [Google Scholar]
  24. Toutirais O, Cabillic F, Le Friec G, et al. DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vγ9Vδ2 T cells. Eur J Immunol 2009 ; 39 : 1361–1368. [CrossRef] [PubMed] [Google Scholar]
  25. Tahara-Hanaoka S, Shibuya K, Onoda Y, et al. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 2004 ; 16 : 533–538. [CrossRef] [PubMed] [Google Scholar]
  26. Bottino C, Castriconi R, Pende D, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 2003 ; 198 : 557–567. [CrossRef] [PubMed] [Google Scholar]
  27. Dessarthe B, Thedrez A, Latouche JB, et al. CRTAM receptor engagement by Necl-2 on tumor cells triggers cell death of activated Vgamma9Vdelta2 T cells. J Immunol 2013 ; 190 : 4868–4876. [Google Scholar]
  28. Boles KS, Barchet W, Diacovo T, et al. The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood 2005 ; 106 : 779–786. [CrossRef] [PubMed] [Google Scholar]
  29. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 2012 ; 19 : 107–120. [CrossRef] [PubMed] [Google Scholar]
  30. Espert L, Denizot M, Grimaldi M, et al. Autophagie et destruction des lymphocytes T CD4 par le VIH-1. Med Sci (Paris) 2006 ; 22 : 677–678. [PubMed] [Google Scholar]
  31. Santolaria T, Robard M, Leger A, et al. Repeated systemic administrations of both aminobisphosphonates and human Vgamma9Vdelta2 T cells efficiently control tumor development in vivo. J Immunol 2013 ; 191 : 1993–2000. [CrossRef] [PubMed] [Google Scholar]
  32. Cabillic F, Toutirais O, de La Pintière CT, et al. Aminobiphosphonate-pretreated dendritic cells trigger successful Vg9Vd2 T cell amplification for immunotherapy in advanced cancer patients. Cancer Immunol Immunother 2010 ; 59 : 1611–1619. [CrossRef] [PubMed] [Google Scholar]
  33. Martinet L, Poupot R, Fournie JJ. Pitfalls on the roadmap to gammadelta T cell-based cancer immunotherapies. Immunol Lett 2009 ; 124 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  34. Lavoue V, Thedrez A, Leveque J, et al. Immunity of human epithelial ovarian carcinoma: the paradigm of immune suppression in cancer. J Transl Med 2013 ; 11 : 147. [CrossRef] [PubMed] [Google Scholar]
  35. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013 ; 369 : 122–133. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.