Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 5, Mai 2014
Page(s) 537 - 543
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143005017
Publié en ligne 13 juin 2014
  1. Fournier G, Garrido-Urbani S, Reymond N, Lopez M. Nectines et nectines-like - Marqueurs, acteurs et cibles de l’oncogenèse. Med Sci (Paris) 2010 ; 26 : 273–279. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 2008 ; 9 : 603–615. [CrossRef] [PubMed] [Google Scholar]
  3. Muhlebach MD, Mateo M, Sinn PL, et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011 ; 480 : 530–533. [PubMed] [Google Scholar]
  4. Rikitake Y, Mandai K, Takai Y. The role of nectins in different types of cell-cell adhesion. J Cell Sci 2012 ; 125 : 3713–3722. [CrossRef] [PubMed] [Google Scholar]
  5. Chan CJ, Andrews DM, Smyth MJ. Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Curr Opin Immunol 2012 ; 24 : 246–251. [CrossRef] [PubMed] [Google Scholar]
  6. Fuchs A, Colonna M. The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin Cancer Biol 2006 ; 16 : 359–366. [CrossRef] [PubMed] [Google Scholar]
  7. Pavlova NN, Pallasch C, Elia AE, et al. A role for PVRL4-driven cell-cell interactions in tumorigenesis. Elife 2013 ; 2 : e00358. [CrossRef] [PubMed] [Google Scholar]
  8. Mateo M, Lopez M. Nectine-4, une protéine clé pour la transmission du virus de la rougeole. Med Sci (Paris) 2012 ; 28 : 363–365. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Tran YK, Bogler O, Gorse KM, et al. A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res 1999 ; 59 : 35–43. [PubMed] [Google Scholar]
  10. Murakami Y. Involvement of a cell adhesion molecule, TSLC1/IGSF4, in human oncogenesis. Cancer Sci 2005 ; 96 : 543–552. [CrossRef] [PubMed] [Google Scholar]
  11. Dewan MZ, Takamatsu N, Hidaka T, et al. Critical role for TSLC1 expression in the growth and organ infiltration of adult T-cell leukemia cells in vivo. J Virol 2008 ; 82 : 11958–11963. [CrossRef] [PubMed] [Google Scholar]
  12. Nakahata S, Morishita K. CADM1/TSLC1 is a novel cell surface marker for adult T-cell leukemia/lymphoma. J Clin Exp Hematop 2012 ; 52 : 17–22. [CrossRef] [PubMed] [Google Scholar]
  13. Fabre-Lafay S, Garrido-Urbani S, Reymond N, et al. Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM-17. J Biol Chem 2005 ; 280 : 19543–19550. [CrossRef] [PubMed] [Google Scholar]
  14. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012 ; 21 : 309–322. [CrossRef] [PubMed] [Google Scholar]
  15. Catros-Quemener V, Bouet F, Genetet N. Immunité antitumorale et thérapies cellulaires du cancer. Med Sci (Paris) 2003 ; 19 : 43–53. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Narni-Mancinelli E, Ugolini S, Vivier E. Les cellules natural killer - Adaptation et mémoire dans le système immunitaire inné. Med Sci (Paris) 2013 ; 29 : 389–395. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  17. Catros V, Toutirais O, Bouet F, et al. Lymphocytes Tγδ en cancérologie - Des lymphocytes tueurs non conventionnels. Med Sci (Paris) 2010 ; 26 : 185–191. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol 2013 ; 13 : 88–100. [CrossRef] [PubMed] [Google Scholar]
  19. Harly C, Guillaume Y, Nedellec S, et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gammadelta T-cell subset. Blood 2012 ; 120 : 2269–2279. [CrossRef] [PubMed] [Google Scholar]
  20. Vavassori S, Kumar A, Wan GS, et al. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human gammadelta T cells. Nat Immunol 2013 ; 14 : 908–916. [CrossRef] [PubMed] [Google Scholar]
  21. Bouet-Toussaint F, Cabillic F, Toutirais O, et al. V 9V 2 T cells-mediated recognition of human solid tumors. Potential for immunotherapy of hepatocellular and colorectal carcinomas. Cancer Immunol Immunother 2008 ; 57 : 531–539. [CrossRef] [PubMed] [Google Scholar]
  22. Thedrez A, Lavoue V, Dessarthe B, et al. A quantitative deficiency in peripheral blood Vgamma9Vdelta2 cells is a negative prognostic biomarker in ovarian cancer patients. PLoS One 2013 ; 8 : e63322. [CrossRef] [PubMed] [Google Scholar]
  23. Lavoue V, Cabillic F, Toutirais O, et al. Sensitization of ovarian carcinoma cells with zoledronate restores the cytotoxic capacity of Vgamma9Vdelta2 T cells impaired by the prostaglandin E2 immunosuppressive factor: implications for immunotherapy. Int J Cancer 2012 ; 131 : E449–E462. [CrossRef] [PubMed] [Google Scholar]
  24. Toutirais O, Cabillic F, Le Friec G, et al. DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vγ9Vδ2 T cells. Eur J Immunol 2009 ; 39 : 1361–1368. [CrossRef] [PubMed] [Google Scholar]
  25. Tahara-Hanaoka S, Shibuya K, Onoda Y, et al. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 2004 ; 16 : 533–538. [CrossRef] [PubMed] [Google Scholar]
  26. Bottino C, Castriconi R, Pende D, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 2003 ; 198 : 557–567. [CrossRef] [PubMed] [Google Scholar]
  27. Dessarthe B, Thedrez A, Latouche JB, et al. CRTAM receptor engagement by Necl-2 on tumor cells triggers cell death of activated Vgamma9Vdelta2 T cells. J Immunol 2013 ; 190 : 4868–4876. [CrossRef] [PubMed] [Google Scholar]
  28. Boles KS, Barchet W, Diacovo T, et al. The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood 2005 ; 106 : 779–786. [CrossRef] [PubMed] [Google Scholar]
  29. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 2012 ; 19 : 107–120. [CrossRef] [PubMed] [Google Scholar]
  30. Espert L, Denizot M, Grimaldi M, et al. Autophagie et destruction des lymphocytes T CD4 par le VIH-1. Med Sci (Paris) 2006 ; 22 : 677–678. [PubMed] [Google Scholar]
  31. Santolaria T, Robard M, Leger A, et al. Repeated systemic administrations of both aminobisphosphonates and human Vgamma9Vdelta2 T cells efficiently control tumor development in vivo. J Immunol 2013 ; 191 : 1993–2000. [CrossRef] [PubMed] [Google Scholar]
  32. Cabillic F, Toutirais O, de La Pintière CT, et al. Aminobiphosphonate-pretreated dendritic cells trigger successful Vg9Vd2 T cell amplification for immunotherapy in advanced cancer patients. Cancer Immunol Immunother 2010 ; 59 : 1611–1619. [CrossRef] [PubMed] [Google Scholar]
  33. Martinet L, Poupot R, Fournie JJ. Pitfalls on the roadmap to gammadelta T cell-based cancer immunotherapies. Immunol Lett 2009 ; 124 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  34. Lavoue V, Thedrez A, Leveque J, et al. Immunity of human epithelial ovarian carcinoma: the paradigm of immune suppression in cancer. J Transl Med 2013 ; 11 : 147. [CrossRef] [PubMed] [Google Scholar]
  35. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013 ; 369 : 122–133. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.