Free Access
Issue
Med Sci (Paris)
Volume 30, Number 5, Mai 2014
Page(s) 532 - 536
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143005016
Published online 13 June 2014
  1. Greiss S, Gartner A. Sirtuin/Sir2 Phylogeny, evolutionary considerations and structural conservation. Mol Cells 2009 ; 28 : 407–415. [CrossRef] [PubMed] [Google Scholar]
  2. Gilgenkrantz H, Perret C. Le silence parlant de la sirtuine 1 dans la stéatose et le cancer du foie. Med Sci (Paris) 2012 ; 28 : 269–271. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Guarente L. Sirtuins, aging, and metabolism. Cold Spring Harb Symp Quant Biol 2011 ; 76 : 81–90. [CrossRef] [PubMed] [Google Scholar]
  4. Kim HS, Vassilopoulos A, Wang RH, et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 2011 ; 20 : 487–499. [CrossRef] [PubMed] [Google Scholar]
  5. Liu PY, Xu N, Malyukova A, et al. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ 2012 ; 20 : 503–514. [CrossRef] [PubMed] [Google Scholar]
  6. Liu Y, Wang DL, Chen S, et al. Oncogene Ras/phosphatidyl inositol 3-kinase (PI3K) signaling targets histone H3 acetylation at lysine K56. J Biol Chem 2012 ; 287 : 41469–41480. [CrossRef] [PubMed] [Google Scholar]
  7. Sayd S, Thirant C, El-Habr EA, et al. Sirtuin-2 activity is required for glioma stem cell proliferation arrest but not necrosis induced by resveratrol. Stem Cell Rev 2014 ; 10 : 103–113. [CrossRef] [PubMed] [Google Scholar]
  8. Wang F, Nguyen M, Qin FX, Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007 ; 6 : 505–514. [CrossRef] [PubMed] [Google Scholar]
  9. Brunet A. Bien vieillir : la voie de signalisation insuline-FOXO et la longévité. Med Sci (Paris) 2012 ; 28 : 316–320. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Parmentier F, Lejeune FX, Neri C. Pathways to decoding the clinical potential of stress response FOXO-interaction networks for Huntington’s disease: of gene prioritization and context dependence. Front Aging Neurosci 2013 ; 5 : 22. [CrossRef] [PubMed] [Google Scholar]
  11. Hori YS, Kuno A, Hosoda R, Horio Y. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One 2013 ; 8 : e73875. [CrossRef] [PubMed] [Google Scholar]
  12. Liu L, Arun A, Ellis L, et al. Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating Forkhead box O3a (Foxo3a) and activating Bim. J Biol Chem 2012 ; 287 : 32307–32311. [CrossRef] [PubMed] [Google Scholar]
  13. Outeiro TF, Kontopoulos E, Altmann SM, et al. Sirtuin 2 Inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson’s disease. Science 2007 ; 317 : 516–519. [CrossRef] [PubMed] [Google Scholar]
  14. Koob AO, Ubhi K, Paulsson JF, et al. Lovastatin ameliorates alpha-synuclein accumulation and oxidation in transgenic mouse models of alpha-synucleinopathies. Exp Neurol 2010 ; 221 : 267–274. [CrossRef] [PubMed] [Google Scholar]
  15. Taylor DM, Balabadra U, Xiang Z, et al. A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase. ACS Chem Biol 2011 ; 6 : 540–546. [CrossRef] [PubMed] [Google Scholar]
  16. Chopra V, Quinti L, Kim J, et al. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models. Cell Rep 2012 ; 2 : 1492–1497. [CrossRef] [PubMed] [Google Scholar]
  17. Rasouri S, Lagouge M, Auwerx J. SIRT1/PGC-1 - Un axe neuroprotecteur ? Med Sci (Paris) 2007 ; 23 : 840–844. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Krishnan J, Danzer C, Simka T, et al. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev 2012 ; 26 : 259–270. [CrossRef] [PubMed] [Google Scholar]
  19. Burnett C, Valentini S, Cabreiro F, et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011 ; 477 : 482–485. [CrossRef] [PubMed] [Google Scholar]
  20. Park SH, Zhu Y, Ozden O, et al. SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis. Transl Cancer Res 2012 ; 1 : 15–21. [PubMed] [Google Scholar]
  21. Jin YH, Kim YJ, Kim DW, et al. Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. Biochem Biophys Res Commun 2008 ; 368 : 690–695. [CrossRef] [PubMed] [Google Scholar]
  22. Inoue T, Nakayama Y, Yamada H, et al. SIRT2 downregulation confers resistance to microtubule inhibitors by prolonging chronic mitotic arrest. Cell Cycle 2009 ; 8 : 1279–1291. [CrossRef] [PubMed] [Google Scholar]
  23. Pilon A. Poüs C. Compartimentation et plasticité du réseau microtubulaire. Med Sci (Paris) 2013 ; 29 : 194–199. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Voelter-Mahlknecht S, Mahlknecht U. The sirtuins in the pathogenesis of cancer. Clin Epigenetics 2010 ; 1 : 71–83. [CrossRef] [PubMed] [Google Scholar]
  25. Narayan N, Lee IH, Borenstein R, et al. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 2012 ; 492 : 199–204. [CrossRef] [PubMed] [Google Scholar]
  26. Zuo Q, Wu W, Li X, et al. HDAC6 and SIRT2 promote bladder cancer cell migration and invasion by targeting cortactin. Oncol Rep 2012 ; 27 : 819–824. [PubMed] [Google Scholar]
  27. Zhang Y, Au Q, Zhang M, et al. Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity. Biochem Biophys Res Commun 2009 ; 386 : 729–733. [CrossRef] [PubMed] [Google Scholar]
  28. Peck B, Chen CY, Ho KK, et al. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol Cancer Ther 2010 ; 9 : 844–855. [CrossRef] [PubMed] [Google Scholar]
  29. Aggarwal BB, Bhardwaj A, Aggarwal RS, et al. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 2004 ; 24(5A) : 2783–2840. [PubMed] [Google Scholar]
  30. Black JC, Mosley A, Kitada T, et al. The SIRT2 deacetylase regulates autoacetylation of p300. Mol Cell 2008 ; 32 : 449–455. [CrossRef] [PubMed] [Google Scholar]
  31. Beirowski B, Gustin J, Armour SM, et al. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci USA 2011 ; 108 : E952–E961. [CrossRef] [Google Scholar]
  32. Jiang W, Wang S, Xiao M, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell 2011 ; 43 : 33–44. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.