Free Access
Issue
Med Sci (Paris)
Volume 30, Number 2, Février 2014
Page(s) 153 - 159
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143002012
Published online 24 February 2014
  1. Verkhratsky A, Butt A. Glial neurobiology: a text book. New York : John Wiley and Sons Ltd, 2007. [CrossRef] [Google Scholar]
  2. Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009 ; 32 : 421–431. [CrossRef] [PubMed] [Google Scholar]
  3. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007 ; 10 : 1387–1394. [CrossRef] [PubMed] [Google Scholar]
  4. Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 2009 ; 27 : 119–145. [CrossRef] [PubMed] [Google Scholar]
  5. Bechade C, Cantaut-Belarif Y, Bessis A., Microglial control of neuronal activity. Front Cell Neurosci 2013 ; 7 : 32. [CrossRef] [PubMed] [Google Scholar]
  6. Blank T, Prinz M. Microglia as modulators of cognition and neuropsychiatric disorders. Glia 2013 ; 61 : 62–70. [CrossRef] [PubMed] [Google Scholar]
  7. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev 2011 ; 91 : 461–553. [CrossRef] [Google Scholar]
  8. Schafer DP, Lehrman EK, Stevens B. The quad-partite synapse: microglia-synapse interactions in the developing and mature CNS. Glia 2013 ; 61 : 24–36. [CrossRef] [PubMed] [Google Scholar]
  9. Blinzinger K, Kreutzberg G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat 1968 ; 85 : 145–157. [CrossRef] [PubMed] [Google Scholar]
  10. Siskova Z, Page A, O’Connor V, Perry VH. Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping. Am J Pathol 2009 ; 175 : 1610–1621. [CrossRef] [PubMed] [Google Scholar]
  11. Trapp BD, Wujek JR, Criste GA, et al. Evidence for synaptic stripping by cortical microglia. Glia 2007 ; 55 : 360–368. [CrossRef] [PubMed] [Google Scholar]
  12. Ulmann L, Hatcher JP, Hughes JP, et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 2008 ; 28 : 11263–11268. [CrossRef] [PubMed] [Google Scholar]
  13. Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003 ; 424 : 778–783. [CrossRef] [PubMed] [Google Scholar]
  14. Coull JA, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005 ; 438 : 1017–1021. [CrossRef] [PubMed] [Google Scholar]
  15. Bezzi P, Domercq M, Brambilla L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 2001 ; 4 : 702–710. [CrossRef] [PubMed] [Google Scholar]
  16. Domercq M, Brambilla L, Pilati E, et al. P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 2006 ; 281 : 30684–30696. [CrossRef] [PubMed] [Google Scholar]
  17. Perea G, Araque A. GLIA modulates synaptic transmission. Brain Res Rev 2010 ; 63 : 93–102. [CrossRef] [PubMed] [Google Scholar]
  18. Angulo MC, Le MK, Kozlov AS, et al. GABA, a forgotten gliotransmitter. Prog Neurobiol 2008 ; 86 : 297–303. [CrossRef] [PubMed] [Google Scholar]
  19. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005 ; 308 : 1314–1318. [CrossRef] [PubMed] [Google Scholar]
  20. Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005 ; 8 : 752–758. [CrossRef] [PubMed] [Google Scholar]
  21. Haynes SE, Hollopeter G, Yang G, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006 ; 9 : 1512–1519. [CrossRef] [PubMed] [Google Scholar]
  22. Orr AG, Orr AL, Li XJ, et al. Adenosine A(2A) receptor mediates microglial process retraction. Nat Neurosci 2009 ; 12 : 872–878. [CrossRef] [PubMed] [Google Scholar]
  23. Wake H, Moorhouse AJ, Jinno S, et al. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009 ; 29 : 3974–3980. [CrossRef] [PubMed] [Google Scholar]
  24. Fontainhas AM, Wang M, Liang KJ, et al. Microglial morphology, dynamic behavior is regulated by ionotropic glutamatergic, GABAergic neurotransmission. PLoS One 2011 ; 6 : e15973. [CrossRef] [PubMed] [Google Scholar]
  25. Wu LJ, Zhuo M. Resting microglial motility is independent of synaptic plasticity in mammalian brain. J Neurophysiol 2008 ; 99 : 2026–2032. [CrossRef] [PubMed] [Google Scholar]
  26. Tremblay ME, Lowery RL, Majewska AK., Microglial interactions with synapses are modulated by visual experience. PLoS Biol 2010 ; 8 : e1000527. [CrossRef] [PubMed] [Google Scholar]
  27. Li Y, Du XF, Liu CS, et al. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 2012 ; 23 : 1189–1202. [CrossRef] [PubMed] [Google Scholar]
  28. Santello M, Volterra A. TNFalpha in synaptic function: switching gears. Trends Neurosci 2012 ; 35 : 638–647. [CrossRef] [PubMed] [Google Scholar]
  29. Pascual O, Ben AS, Rostaing P, et al. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 2012 ; 109 : E197–E205. [CrossRef] [Google Scholar]
  30. Piccinin S, Di AS, Piccioni A, et al. CX3CL1-induced modulation at CA1 synapses reveals multiple mechanisms of EPSC modulation involving adenosine receptor subtypes. J Neuroimmunol 2010 ; 224 : 85–92. [CrossRef] [PubMed] [Google Scholar]
  31. Rogers JT, Morganti JM, Bachstetter AD, et al. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 2011 ; 31 : 16241–16250. [CrossRef] [PubMed] [Google Scholar]
  32. Costello DA, Lyons A, Denieffe S, et al. Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation. J Biol Chem 2011 ; 286 : 34722–34732. [CrossRef] [PubMed] [Google Scholar]
  33. Roumier A, Bechade C, Poncer JC, et al. Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 2004 ; 24 : 11421–11428. [CrossRef] [PubMed] [Google Scholar]
  34. Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011 ; 333 : 1456–1458. [CrossRef] [PubMed] [Google Scholar]
  35. Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012 ; 74 : 691–705. [CrossRef] [PubMed] [Google Scholar]
  36. Hoshiko M, Arnoux I, Avignone E, et al. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J Neurosci 2012 ; 32 : 15106–15111. [CrossRef] [PubMed] [Google Scholar]
  37. Legendre P, Le Corronc H. Cellules microgliales et développement du système nerveux central chez l’embryon. Med Sci (Paris) 2014 ; 30 : 147–152. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Pochet S, Seil M, El Ouaaliti M, Dehaye JP. P2X4 ou P2X7. Lequel de ces deux récepteurs nous fera saliver ? Med Sci (Paris) 2013 ; 29 : 509–514. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Estebanez L, Destexhe A, El-Boustani S, Shulz DE. Ce que les vibrissent disent au cerveau tactile. Med Sci (Paris) 2014 ; 30 : 93–98. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Petersen CC. The functional organization of the barrel cortex. Neuron 2007 ; 56 : 339–355. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.