Free Access
Med Sci (Paris)
Volume 30, Number 2, Février 2014
Page(s) 147 - 152
Section M/S Revues
Published online 24 February 2014
  1. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Phys Rev 2011 ; 91 : 461–553. [CrossRef] [Google Scholar]
  2. Pont-Lezica L, Bechade C, Belarif-Cantaut Y, et al. Physiological roles of microglia during development. J Neurochem 2011 ; 119 : 901–908. [CrossRef] [PubMed] [Google Scholar]
  3. Roumier A, Pascual O, Bechade C, et al. Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function. PLoS One 2008 ; 3 : e2595. [CrossRef] [PubMed] [Google Scholar]
  4. McKercher SR, Torbett BE, Anderson KL, et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 1996 ; 15 : 5647–5658. [PubMed] [Google Scholar]
  5. Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 1999 ; 117 : 145–152. [CrossRef] [PubMed] [Google Scholar]
  6. Ginhoux F, Merad M. Les cellules de la microglie : leurs origines extra-embryonnaires enfin révélées. Med Sci (Paris) 2011 ; 27 : 719–724. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010 ; 330 : 841–845. [CrossRef] [PubMed] [Google Scholar]
  8. Kierdorf K, Erny D, Goldmann T, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 2013 ; 16 : 273–280. [CrossRef] [PubMed] [Google Scholar]
  9. Wolf Y, Yona S, Kim KW, Jung S., Microglia seen from the CX3CR1 angle. Front Cell Neurosci 2013 ; 7 : 26. [CrossRef] [PubMed] [Google Scholar]
  10. Rigato C, Buckinx R, Le Corronc H, et al. Pattern of invasion of the embryonic mouse spinal cord by microglial cells at the time of the onset of functional neuronal networks. Glia 2011 ; 59 : 675–695. [CrossRef] [PubMed] [Google Scholar]
  11. Swinnen N, Smolders S, Avila A, et al. Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia 2013 ; 61 : 150–163. [CrossRef] [PubMed] [Google Scholar]
  12. Caldero J, Brunet N, Ciutat D, et al. Development of microglia in the chick embryo spinal cord: implications in the regulation of motoneuronal survival and death. J Neurosci Res 2009 ; 87 : 2447–2466. [CrossRef] [PubMed] [Google Scholar]
  13. Rigato C, Swinnen N, Buckinx R, et al. Microglia proliferation is controlled by P2X7 receptors in a Pannexin-1-independent manner during early embryonic spinal cord invasion. J Neurosci 2012 ; 32 : 11559–11573. [CrossRef] [PubMed] [Google Scholar]
  14. Hong S, Schwarz N, Brass A, et al. Differential regulation of P2X7 receptor activation by extracellular nicotinamide adenine dinucleotide and ecto-ADP-ribosyltransferases in murine macrophages and T cells. J Immunol 2009 ; 183 : 578–592. [CrossRef] [PubMed] [Google Scholar]
  15. Durnin L, Dai Y, Aiba I, et al. Release, neuronal effects and removal of extracellular beta-nicotinamide adenine dinucleotide (beta-NAD+) in the rat brain. Eur J Neurosci 2012 ; 35 : 423–435. [CrossRef] [PubMed] [Google Scholar]
  16. Ueno M, Fujita Y, Tanaka T, et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 2013 ; 16 : 543–551. [CrossRef] [PubMed] [Google Scholar]
  17. Sedel F, Bechade C, Vyas S, Triller A. Macrophage-derived tumor necrosis factor alpha, an early developmental signal for motoneuron death. J Neurosci 2004 ; 24 : 2236–2246. [CrossRef] [PubMed] [Google Scholar]
  18. Cunningham CL, Martinez-Cerdeno V, Noctor SC. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 2013 ; 33 : 4216–4233. [CrossRef] [PubMed] [Google Scholar]
  19. Arnold T, Betsholtz C., The importance of microglia in the development of the vasculature in the central nervous system. Vasc Cell 2013 ; 5 : 4. [CrossRef] [PubMed] [Google Scholar]
  20. Neumann H, Wekerle H. Brain microglia: watchdogs with pedigree. Nat Neurosci 2013 ; 16 : 253–255. [CrossRef] [PubMed] [Google Scholar]
  21. Audinat E, Arnoux I. La microglie : des cellules immunitaires qui sculptent et contrôlent les synapses neuronales. Med Sci (Paris) 2014 ; 30 : 153–159. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Pochet S, Seil M, El Ouaaliti M, Dehaye JP. P2X4 ou P2X7: lequel de ces deux récepteurs nous fera saliver ? Med Sci (Paris) 2013 ; 29 : 509–514. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.