Free Access
Issue
Med Sci (Paris)
Volume 29, Number 8-9, Août–Septembre 2013
Page(s) 772 - 777
Section Diabète : approches thérapeutiques émergentes
DOI https://doi.org/10.1051/medsci/2013298017
Published online 05 September 2013
  1. Eckel-Mahan K, Sassone-Corsi P. Metabolism and the circadian clock converge. Physiol Rev 2013 ; 93 : 107–135. [CrossRef] [PubMed] [Google Scholar]
  2. Gatfield D, Le Martelot G, Vejnar CE, et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 2009 ; 23 : 1313–1326. [CrossRef] [PubMed] [Google Scholar]
  3. Kojima S, Gatfield D, Esau CC, Green CB., MicroRNA-122 modulates the rhythmic expression profile of the circadian deadenylase Nocturnin in mouse liver. PLoS One 2010 ; 5 : e11264. [CrossRef] [PubMed] [Google Scholar]
  4. Feng D, Liu T, Sun Z, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011 ; 331 : 1315–1319. [CrossRef] [PubMed] [Google Scholar]
  5. Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell 2012 ; 47 : 158–167. [CrossRef] [PubMed] [Google Scholar]
  6. Damiola F, Le Minh N, Preitner N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000 ; 14 : 2950–2961. [CrossRef] [PubMed] [Google Scholar]
  7. Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007 ; 6 : 414–421. [CrossRef] [PubMed] [Google Scholar]
  8. Arble DM, Bass J, Laposky AD, et al. W. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 2009 ; 17 : 2100–2102. [CrossRef] [PubMed] [Google Scholar]
  9. Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012 ; 15 : 848–860. [CrossRef] [PubMed] [Google Scholar]
  10. Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science 2005 ; 308 : 1043–1045. [CrossRef] [PubMed] [Google Scholar]
  11. Rudic RD, McNamara P, Curtis AM, et al. BMAL1, CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2004 ; 2 : e377. [CrossRef] [PubMed] [Google Scholar]
  12. Paschos GK, Ibrahim S, Song WL, et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med 2012 ; 18 : 1768–1777. [CrossRef] [PubMed] [Google Scholar]
  13. Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010 ; 466 : 627–631. [CrossRef] [PubMed] [Google Scholar]
  14. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 2008 ; 105 : 15172–15177. [CrossRef] [Google Scholar]
  15. Lamia KA, Papp SJ, Yu RT, et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011 ; 480 : 552–556. [PubMed] [Google Scholar]
  16. Zhang EE, Liu Y, Dentin R, et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 2010 ; 16 : 1152–1156. [CrossRef] [PubMed] [Google Scholar]
  17. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 2009 ; 106 : 4453–4458. [CrossRef] [Google Scholar]
  18. VanCauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 1997 ; 18 : 716–738. [CrossRef] [PubMed] [Google Scholar]
  19. Goumidi L, Grechez A, Dumont J, et al. Impact of REV-ERB alpha gene polymorphisms on obesity phenotypes in adult and adolescent samples. Int J Obes (Lond) 2013 ; 37 : 666–672. [CrossRef] [PubMed] [Google Scholar]
  20. Barker A, Sharp SJ, Timpson NJ, et al. Association of genetic loci with glucose levels in childhood and adolescence: a meta-analysis of over 6, 000 children. Diabetes 2011 ; 60 : 1805–1812. [CrossRef] [PubMed] [Google Scholar]
  21. Scott EM, Carter AM, Grant PJ. Association between polymorphisms in the clock gene, obesity and the metabolic syndrome in man. Int J Obes (Lond) 2008 ; 32 : 658–662. [CrossRef] [PubMed] [Google Scholar]
  22. Woon PY, Kaisaki PJ, Braganca J, et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci USA 2007 ; 104 : 14412–14417. [CrossRef] [Google Scholar]
  23. Wang XS, Armstrong ME, Cairns BJ, et al. Shift work and chronic disease: the epidemiological evidence. Occup Med (Lond) 2011 ; 61 : 78–89. [CrossRef] [PubMed] [Google Scholar]
  24. Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009 ; 324 : 651–654. [CrossRef] [PubMed] [Google Scholar]
  25. Nakahata Y, Sahar S, Astarita G, et al. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009 ; 324 : 654–657. [CrossRef] [PubMed] [Google Scholar]
  26. Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008 ; 134 : 317–328. [CrossRef] [PubMed] [Google Scholar]
  27. Asher G, Reinke H, Altmeyer M, et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 2010 ; 142 : 943–953. [CrossRef] [PubMed] [Google Scholar]
  28. Lamia KA, Sachdeva UM, Ditacchio L, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009 ; 326 : 437–440. [CrossRef] [PubMed] [Google Scholar]
  29. Kaasik K, Kivimae S, Allen JJ, et al. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 2013 ; 17 : 291–302. [CrossRef] [PubMed] [Google Scholar]
  30. Li MD, Ruan HB, Hughes ME, et al. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 2013 ; 17 : 303–310. [CrossRef] [PubMed] [Google Scholar]
  31. Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001 ; 293 : 510–514. [CrossRef] [PubMed] [Google Scholar]
  32. O’Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature 2011 ; 469 : 498–503. [CrossRef] [PubMed] [Google Scholar]
  33. Le Minh N, Damiola F, Tronche F, et al. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 2001 ; 20 : 7128–7136. [CrossRef] [PubMed] [Google Scholar]
  34. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 2010 ; 24 : 345–357. [CrossRef] [PubMed] [Google Scholar]
  35. Cho H, Zhao X, Hatori M, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature 2012 ; 485 : 123–127. [CrossRef] [PubMed] [Google Scholar]
  36. Bugge A, Feng D, Everett LJ, et al. Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function. Genes Dev 2012 ; 26 : 657–667. [CrossRef] [PubMed] [Google Scholar]
  37. Duez H, Staels B. Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler Thromb Vasc Biol 2010 ; 30 : 1529–1534. [CrossRef] [PubMed] [Google Scholar]
  38. Solt LA, Wang Y, Banerjee S, et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 2012 ; 485 : 62–68. [CrossRef] [PubMed] [Google Scholar]
  39. Solt LA, Burris TP. Action of RORs and their ligands in (patho)physiology. Trends Endocrinol Metab 2012 ; 23 : 619–627. [CrossRef] [PubMed] [Google Scholar]
  40. Yang X, Downes M, Yu RT, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 2006 ; 126 : 801–810. [CrossRef] [PubMed] [Google Scholar]
  41. Liu C, Li SM, Liu TH, et al. Transcriptional coactivator PGC-1a integrates the mammalian clock and energy metabolism. Nature 2007 ; 447 : 477–481. [CrossRef] [PubMed] [Google Scholar]
  42. Canaple L, Rambaud J, Dkhissi-Benyahya O, et al. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 2006 ; 20 : 1715–1727. [CrossRef] [PubMed] [Google Scholar]
  43. Wang N, Yang G, Jia Z, et al. Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 2008 ; 8 : 482–491. [CrossRef] [PubMed] [Google Scholar]
  44. Codogno P. Les gènes ATG et la macro-autophagie. Med Sci (Paris) 2004 ; 20 : 734–736. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Panda S, Antoch MP, Miller BH, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002 ; 109 : 307–320. [CrossRef] [PubMed] [Google Scholar]
  46. Ma D, Panda S, Lin JD. Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J 2011 ; 30 : 4642–4651. [CrossRef] [PubMed] [Google Scholar]
  47. Xiong X, Tao R, DePinho RA, Dong XC. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J Biol Chem 2012 ; 287 : 39107–39114. [CrossRef] [PubMed] [Google Scholar]
  48. Sachdeva UM, Thompson CB. Diurnal rhythms of autophagy: implications for cell biology and human disease. Autophagy 2008 ; 4 : 581–589. [PubMed] [Google Scholar]
  49. Woldt E, Sebti Y, Solt LA, et al. Rev-erb-a modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 2013 ; 19 : 1039–1046. [CrossRef] [PubMed] [Google Scholar]
  50. Delezie J, Pévet P, Challet E. Implication du gène d’horloge Reverba dans l'obésité. Med Sci (Paris) 2012 ; 28 : 687–689. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Teboul M, Delaunay F. Les récepteurs REVERBa et REVERBb donnent le tempo. Med Sci (Paris) 2012 ; 28 : 689–692. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Karamitri A, Vincens M, Chen M, Jockers R. Implication des mutations du récepteur de la mélatonine MT2 dans la survenue du diabète de type 2. Med Sci (Paris) 2013 ; 29 : 778–784. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.