Free Access
Issue
Med Sci (Paris)
Volume 29, Number 8-9, Août–Septembre 2013
Page(s) 765 - 771
Section Diabète : approches thérapeutiques émergentes
DOI https://doi.org/10.1051/medsci/2013298016
Published online 05 September 2013
  1. Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005 ; 115 : 1343–1351. [CrossRef] [PubMed] [Google Scholar]
  2. Byrne CD. Ectopic fat, insulin resistance and non-alcoholic fatty liver disease. Proc Nutr Soc 2013 ; 14 mai : 1–8. [CrossRef] [Google Scholar]
  3. Filhoulaud G, Guilmeau S, Dentin R, et al. Novel insights into ChREBP regulation and function. Trends Endocrinol Metab 2013 ; 24 : 257–268. [CrossRef] [PubMed] [Google Scholar]
  4. Dentin R, Pegorier JP, Benhamed F, et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem 2004 ; 279 : 20314–20326. [CrossRef] [PubMed] [Google Scholar]
  5. Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of ChREBP reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci USA 2004 ; 101 : 7281–7286. [CrossRef] [Google Scholar]
  6. H Yamashita, M. Takenoshita, M. Sakurai, et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci USA 2001 ; 98 : 9116–9121. [CrossRef] [Google Scholar]
  7. Ma L, Tsatsos NG, Towle HC. Direct role of ChREBP/Mlx in regulating hepatic glucose-responsive genes. J Biol Chem 2005 ; 280 : 12019–12027. [CrossRef] [PubMed] [Google Scholar]
  8. Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation dephosphorylation of the ChREBP. Proc Natl Acad Sci USA 2001 ; 98 : 13710–13715. [CrossRef] [Google Scholar]
  9. MV Li, W Chen, N Poungvarin, et al. Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14–3-3. Mol Endocrinol 2008 ; 22 : 1658–1672. [CrossRef] [PubMed] [Google Scholar]
  10. Kabashima T, Kawaguchi, T, Wadzinski BE, Uyeda K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA 2003 ; 100 : 5107–5112. [CrossRef] [Google Scholar]
  11. Dentin R, Tomas-Cobos L, Foufelle F, et al. Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J Hepatol 2012 ; 56 : 199–209. [CrossRef] [PubMed] [Google Scholar]
  12. Li MV, Chen W, Harmancey RN, et al. Glucose-6-phosphate mediates activation of the ChREBP. Biochem Biophys Res Comm 2010 ; 395 : 395–400. [CrossRef] [Google Scholar]
  13. Li M, Chang B, Imamura M, Poungvarin N, Chan L. Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 2006 ; 55 : 1179–1189. [CrossRef] [PubMed] [Google Scholar]
  14. lizuka K, Horikawa Y. Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping. Biochem Biophys Res Commun 2008 ; 374 : 95–100. [CrossRef] [PubMed] [Google Scholar]
  15. Bricambert J, Miranda J, Benhamed F, et al. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest 2010 ; 120 : 4316–4331. [CrossRef] [PubMed] [Google Scholar]
  16. Guinez C, Filhoulaud G, Benhamed F, et al. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 2011 ; 60 : 1399–1413. [CrossRef] [PubMed] [Google Scholar]
  17. Sakiyama H, Fujiwara N, Noguchi T, et al. The role of O-linked GlcNAc modification on the glucose response of ChREBP. Biochem Biophys Res Commun 2010 ; 402 : 784–789. [CrossRef] [PubMed] [Google Scholar]
  18. Issad T, Kuo M. O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol Metab 2008 ; 19 : 380–389. [CrossRef] [PubMed] [Google Scholar]
  19. Kuo M, Zilberfarb V, Gangneux N, et al. O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett 2008 ; 582 : 829–834. [CrossRef] [PubMed] [Google Scholar]
  20. Housley MP, Rodgers JT, Udeshi ND, et al. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 2008 ; 283 : 16283–16292. [CrossRef] [PubMed] [Google Scholar]
  21. Dentin R, Hedrick S, Xie J, et al. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 2008 ; 319 : 1402–1405. [CrossRef] [PubMed] [Google Scholar]
  22. Housley MP, Udeshi ND, Rodgers JT, et al. A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J Biol Chem 2009 ; 284 : 5148–5157. [CrossRef] [PubMed] [Google Scholar]
  23. Herman MA, Peroni OD, Villoria J, et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 2012 ; 484 : 333–338. [CrossRef] [PubMed] [Google Scholar]
  24. Sun Z, Lazar MA. Dissociating fatty liver and diabetes. Trends Endocrinol Metab 2013 ; 24 : 4–12. [CrossRef] [PubMed] [Google Scholar]
  25. Dentin R, Benhamed F, Hainault I, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 2006 ; 55 : 2159–2170. [CrossRef] [PubMed] [Google Scholar]
  26. Iizuka K, Miller B, Uyeda K. Deficiency of a carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin deficient (ob/ob) mice. Am J Physiol 2006 ; 291 : E358–E364. [Google Scholar]
  27. Benhamed F, Denechaud PD, Lemoine M, et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 2012 ; 122 : 2176–2194. [CrossRef] [PubMed] [Google Scholar]
  28. Cherniske EM, Carpenter TO, Klaiman C, et al. Multisystem study of 20 older adults with Williams syndrome. Am J Med Genet A 2004 ; 131 : 255–264. [CrossRef] [PubMed] [Google Scholar]
  29. Hurtado del Pozo C, Vesperinas-Garcia G, Rubio MA, et al. ChREBP expression in the liver, adipose tissue and differentiated preadipocytes in human obesity. Biochim Biophys Acta 2011 ; 1811 : 1194–1200. [CrossRef] [PubMed] [Google Scholar]
  30. Kursawe R, Caprio S, Giannini C, et al. Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes : associations with insulin resistance and hyperglycemia. Diabetes 2013 ; 62 : 837–844. [CrossRef] [PubMed] [Google Scholar]
  31. Eissing L, Scherer T, Todter K, et al. De novo lipogenesis in human fat, liver is linked to ChREBP-beta, metabolic health. Nat Commun 2013 ; 4 : 1528. [CrossRef] [PubMed] [Google Scholar]
  32. Flamment M, Foufelle F. Le stress du réticulum endoplasmique : de la physiologie à la pathogenèse du diabète de type 2. Med Sci (Paris) 2013 ; 29 : 756–764. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Mancini AD, Poitout V. Les récepteurs membranaires des acides gras de la cellule b : de nouvelles cibles thérapeutiques pour le traitement du diabète de type 2. Med Sci (Paris) 2013 ; 29 : 715–721. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.