Free Access
Med Sci (Paris)
Volume 29, Number 8-9, Août–Septembre 2013
Page(s) 756 - 764
Section Diabète : approches thérapeutiques émergentes
Published online 05 September 2013
  1. Foufelle F, Ferre P. La réponse UPR. Med Sci (Paris) 2007 ; 23 : 291–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Back SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem 2012 ; 81 : 767–793. [CrossRef] [PubMed] [Google Scholar]
  3. Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol 2012 ; 197 : 857–867. [CrossRef] [PubMed] [Google Scholar]
  4. Fonseca SG, Gromada J, Urano F. Endoplasmic reticulum stress and pancreatic β-cell death. Trends Endocrinol Metab 2011 ; 22 : 266–274. [PubMed] [Google Scholar]
  5. Goodge KA, Hutton JC. Translational regulation of proinsulin biosynthesis and proinsulin conversion in the pancreatic beta-cell. Semin Cell Dev Biol 2000 ; 11 : 235–242. [CrossRef] [PubMed] [Google Scholar]
  6. Harding HP, Zeng H, Zhang Y, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 2001 ; 7 : 1153–1163. [CrossRef] [PubMed] [Google Scholar]
  7. Scheuner D, Song B, McEwen E, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 2001 ; 7 : 1165–1176. [CrossRef] [PubMed] [Google Scholar]
  8. Delepine M, Nicolino M, Barrett T, et al. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 2000 ; 25 : 406–409. [CrossRef] [PubMed] [Google Scholar]
  9. Hodish I, Liu M, Rajpal G, et al. Misfolded proinsulin affects bystander proinsulin in neonatal diabetes. J Biol Chem 2010 ; 285 : 685–694. [CrossRef] [PubMed] [Google Scholar]
  10. Liu M, Haataja L, Wright J, et al. Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport. PLoS One 2010 ; 5 : e13333. [CrossRef] [PubMed] [Google Scholar]
  11. Song B, Scheuner D, Ron D, et al. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 2008 ; 118 : 3378–3389. [CrossRef] [PubMed] [Google Scholar]
  12. Lipson KL, Ghosh R, Urano F., The role of IRE1alpha in the degradation of insulin mRNA in pancreatic beta-cells. PLoS ONE 2008 ; 3 : e1648. [CrossRef] [PubMed] [Google Scholar]
  13. Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000 ; 287 : 664–666. [CrossRef] [PubMed] [Google Scholar]
  14. Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 2001 ; 276 : 13935–13940. [PubMed] [Google Scholar]
  15. Lerner AG, Upton JP, Praveen PV, et al. IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 2012 ; 16 : 250–264. [CrossRef] [PubMed] [Google Scholar]
  16. Oslowski CM, Hara T, O’Sullivan-Murphy B, et al. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab 2012 ; 16 : 265–273. [CrossRef] [PubMed] [Google Scholar]
  17. Elouil H, Bensellam M, Guiot Y, et al. Acute nutrient regulation of the unfolded protein response and integrated stress response in cultured rat pancreatic islets. Diabetologia 2007 ; 50 : 1442–1452. [CrossRef] [PubMed] [Google Scholar]
  18. Lipson KL, Fonseca SG, Ishigaki S, et al. Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab 2006 ; 4 : 245–254. [CrossRef] [PubMed] [Google Scholar]
  19. Robertson RP, Harmon J, Tran PO, et al. Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003 ; 52 : 581–587. [CrossRef] [PubMed] [Google Scholar]
  20. Cnop M, Ladriere L, Hekerman P, et al. Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis. J Biol Chem 2007 ; 282 : 3989–3997. [CrossRef] [PubMed] [Google Scholar]
  21. Karaskov E, Scott C, Zhang L, et al. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology 2006 ; 147 : 3398–3407. [CrossRef] [PubMed] [Google Scholar]
  22. Laybutt DR, Preston AM, Åkerfeldt MC, et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007 ; 50 : 752–763. [CrossRef] [PubMed] [Google Scholar]
  23. Borradaile NM, Han X, Harp JD, et al. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 2006 ; 47 : 2726–2737. [CrossRef] [PubMed] [Google Scholar]
  24. Boslem E, MacIntosh G, Preston AM, et al. A lipidomic screen of palmitate-treated MIN6 beta-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem J 2011 ; 435 : 267–276. [CrossRef] [PubMed] [Google Scholar]
  25. Cunha DA, Hekerman P, Ladriere L, et al. Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J Cell Sci 2008 ; 121 : 2308–2318. [CrossRef] [PubMed] [Google Scholar]
  26. Green CD, Olson LK. Modulation of palmitate-induced endoplasmic reticulum stress and apoptosis in pancreatic beta-cells by stearoyl-CoA desaturase and Elovl6. Am J Physiol Endocrinol Metab 2011 ; 300 : E640–E649. [CrossRef] [PubMed] [Google Scholar]
  27. Thorn K, Hovsepyan M, Bergsten P., Reduced levels of SCD1 accentuate palmitate-induced stress in insulin-producing beta-cells. Lipids Health Dis 2010 ; 9 : 108. [CrossRef] [PubMed] [Google Scholar]
  28. Bachar-Wikstrom E, Wikstrom JD, Ariav Y, et al. Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 2013 ; 62 : 1227–1237. [CrossRef] [PubMed] [Google Scholar]
  29. Cardozo AK, Ortis F, Storling J, et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic β-cells. Diabetes 2005 ; 54 : 452–461. [CrossRef] [PubMed] [Google Scholar]
  30. Akerfeldt MC, Howes J, Chan JY, et al. Cytokine-induced beta-cell death is independent of endoplasmic reticulum stress signaling. Diabetes 2008 ; 57 : 3034–3044. [CrossRef] [PubMed] [Google Scholar]
  31. Huang CJ, Lin CY, Haataja L, et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 2007 ; 56 : 2016–2027. [CrossRef] [PubMed] [Google Scholar]
  32. Flamment M, Hajduch E, Ferre P, et al. New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab 2012 ; 23 : 381–390. [CrossRef] [PubMed] [Google Scholar]
  33. Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004 ; 306 : 457–461. [CrossRef] [PubMed] [Google Scholar]
  34. Gregor MF, Yang L, Fabbrini E, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 2009 ; 58 : 693–700. [CrossRef] [PubMed] [Google Scholar]
  35. Puri P, Mirshahi F, Cheung O, et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 2008 ; 134 : 568–576. [CrossRef] [PubMed] [Google Scholar]
  36. Jurczak MJ, Lee AH, Jornayvaz FR, et al. Dissociation of inositol-requiring enzyme (IRE1alpha)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J Biol Chem 2012 ; 287 : 2558–2567. [CrossRef] [PubMed] [Google Scholar]
  37. Hage-Hassan R, Hainault I, Vilquin JT, et al. Endoplasmic reticulum stress does not mediate palmitate-induced insulin resistance in mouse and human muscle cells. Diabetologia 2012 ; 55 : 204–214. [CrossRef] [PubMed] [Google Scholar]
  38. Rieusset J, Chauvin MA, Durand A, et al. Reduction of endoplasmic reticulum stress using chemical chaperones or Grp78 overexpression does not protect muscle cells from palmitate-induced insulin resistance. Biochem Biophys Res Commun. 2012 ; 417 : 439–445. [CrossRef] [PubMed] [Google Scholar]
  39. Kammoun HL, Chabanon H, Hainault I, et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 2009 ; 119 : 1201–1215. [CrossRef] [PubMed] [Google Scholar]
  40. Ferre P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 2010 ; 12 : 83–92. [CrossRef] [PubMed] [Google Scholar]
  41. Lee AH, Scapa EF, Cohen DE, et al. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 2008 ; 320 : 1492–1496. [CrossRef] [PubMed] [Google Scholar]
  42. Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 2008 ; 118 : 316–332. [CrossRef] [PubMed] [Google Scholar]
  43. Xiao C, Giacca A, Lewis GF. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans. Diabetes 2011 ; 60 : 918–924. [CrossRef] [PubMed] [Google Scholar]
  44. Kars M, Yang L, Gregor MF, et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 2010 ; 59 : 1899–1905. [CrossRef] [PubMed] [Google Scholar]
  45. Cao SS, Kaufman RJ. Targeting endoplasmic reticulum stress in metabolic disease. Expert Opin Ther Targets 2013 ; 17 : 437–448. [CrossRef] [PubMed] [Google Scholar]
  46. Bouchecareilh M, Higa A, Fribourg S, et al. Peptides derived from the bifunctional kinase/RNase enzyme IRE1alpha modulate IRE1alpha activity and protect cells from endoplasmic reticulum stress. FASEB J 2011 ; 25 : 3115–3129. [CrossRef] [PubMed] [Google Scholar]
  47. Yusta B, Baggio LL, Estall JL, et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 2006 ; 4 : 391–406. [CrossRef] [PubMed] [Google Scholar]
  48. Franc C. Le diabète : des chiffres alarmants. Med Sci (Paris) 2013 ; 29 : 711–714. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Mancini AD, Poitout V. Les récepteurs membranaires aux acides gras de la cellule β. De nouvelles cibles thérapeutiques pour le traitement du diabète de type 2. Med Sci (Paris) 2013 ; 29 : 715–721. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Mendre C, Mouillac B. Chaperons pharmacologiques. Med Sci (Paris) 2013 ; 29 : 627–635. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.