Accès gratuit
Med Sci (Paris)
Volume 29, Numéro 8-9, Août–Septembre 2013
Page(s) 756 - 764
Section Diabète : approches thérapeutiques émergentes
Publié en ligne 5 septembre 2013
  1. Foufelle F, Ferre P. La réponse UPR. Med Sci (Paris) 2007 ; 23 : 291–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Back SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem 2012 ; 81 : 767–793. [CrossRef] [PubMed] [Google Scholar]
  3. Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol 2012 ; 197 : 857–867. [CrossRef] [PubMed] [Google Scholar]
  4. Fonseca SG, Gromada J, Urano F. Endoplasmic reticulum stress and pancreatic β-cell death. Trends Endocrinol Metab 2011 ; 22 : 266–274. [PubMed] [Google Scholar]
  5. Goodge KA, Hutton JC. Translational regulation of proinsulin biosynthesis and proinsulin conversion in the pancreatic beta-cell. Semin Cell Dev Biol 2000 ; 11 : 235–242. [CrossRef] [PubMed] [Google Scholar]
  6. Harding HP, Zeng H, Zhang Y, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 2001 ; 7 : 1153–1163. [CrossRef] [PubMed] [Google Scholar]
  7. Scheuner D, Song B, McEwen E, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 2001 ; 7 : 1165–1176. [CrossRef] [PubMed] [Google Scholar]
  8. Delepine M, Nicolino M, Barrett T, et al. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 2000 ; 25 : 406–409. [CrossRef] [PubMed] [Google Scholar]
  9. Hodish I, Liu M, Rajpal G, et al. Misfolded proinsulin affects bystander proinsulin in neonatal diabetes. J Biol Chem 2010 ; 285 : 685–694. [CrossRef] [PubMed] [Google Scholar]
  10. Liu M, Haataja L, Wright J, et al. Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport. PLoS One 2010 ; 5 : e13333. [CrossRef] [PubMed] [Google Scholar]
  11. Song B, Scheuner D, Ron D, et al. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 2008 ; 118 : 3378–3389. [CrossRef] [PubMed] [Google Scholar]
  12. Lipson KL, Ghosh R, Urano F., The role of IRE1alpha in the degradation of insulin mRNA in pancreatic beta-cells. PLoS ONE 2008 ; 3 : e1648. [CrossRef] [PubMed] [Google Scholar]
  13. Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000 ; 287 : 664–666. [CrossRef] [PubMed] [Google Scholar]
  14. Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 2001 ; 276 : 13935–13940. [PubMed] [Google Scholar]
  15. Lerner AG, Upton JP, Praveen PV, et al. IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 2012 ; 16 : 250–264. [CrossRef] [PubMed] [Google Scholar]
  16. Oslowski CM, Hara T, O’Sullivan-Murphy B, et al. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab 2012 ; 16 : 265–273. [CrossRef] [PubMed] [Google Scholar]
  17. Elouil H, Bensellam M, Guiot Y, et al. Acute nutrient regulation of the unfolded protein response and integrated stress response in cultured rat pancreatic islets. Diabetologia 2007 ; 50 : 1442–1452. [CrossRef] [PubMed] [Google Scholar]
  18. Lipson KL, Fonseca SG, Ishigaki S, et al. Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab 2006 ; 4 : 245–254. [CrossRef] [PubMed] [Google Scholar]
  19. Robertson RP, Harmon J, Tran PO, et al. Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003 ; 52 : 581–587. [CrossRef] [PubMed] [Google Scholar]
  20. Cnop M, Ladriere L, Hekerman P, et al. Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis. J Biol Chem 2007 ; 282 : 3989–3997. [CrossRef] [PubMed] [Google Scholar]
  21. Karaskov E, Scott C, Zhang L, et al. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology 2006 ; 147 : 3398–3407. [CrossRef] [PubMed] [Google Scholar]
  22. Laybutt DR, Preston AM, Åkerfeldt MC, et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007 ; 50 : 752–763. [CrossRef] [PubMed] [Google Scholar]
  23. Borradaile NM, Han X, Harp JD, et al. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 2006 ; 47 : 2726–2737. [CrossRef] [PubMed] [Google Scholar]
  24. Boslem E, MacIntosh G, Preston AM, et al. A lipidomic screen of palmitate-treated MIN6 beta-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem J 2011 ; 435 : 267–276. [CrossRef] [PubMed] [Google Scholar]
  25. Cunha DA, Hekerman P, Ladriere L, et al. Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J Cell Sci 2008 ; 121 : 2308–2318. [CrossRef] [PubMed] [Google Scholar]
  26. Green CD, Olson LK. Modulation of palmitate-induced endoplasmic reticulum stress and apoptosis in pancreatic beta-cells by stearoyl-CoA desaturase and Elovl6. Am J Physiol Endocrinol Metab 2011 ; 300 : E640–E649. [CrossRef] [PubMed] [Google Scholar]
  27. Thorn K, Hovsepyan M, Bergsten P., Reduced levels of SCD1 accentuate palmitate-induced stress in insulin-producing beta-cells. Lipids Health Dis 2010 ; 9 : 108. [CrossRef] [PubMed] [Google Scholar]
  28. Bachar-Wikstrom E, Wikstrom JD, Ariav Y, et al. Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 2013 ; 62 : 1227–1237. [CrossRef] [PubMed] [Google Scholar]
  29. Cardozo AK, Ortis F, Storling J, et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic β-cells. Diabetes 2005 ; 54 : 452–461. [CrossRef] [PubMed] [Google Scholar]
  30. Akerfeldt MC, Howes J, Chan JY, et al. Cytokine-induced beta-cell death is independent of endoplasmic reticulum stress signaling. Diabetes 2008 ; 57 : 3034–3044. [CrossRef] [PubMed] [Google Scholar]
  31. Huang CJ, Lin CY, Haataja L, et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 2007 ; 56 : 2016–2027. [CrossRef] [PubMed] [Google Scholar]
  32. Flamment M, Hajduch E, Ferre P, et al. New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab 2012 ; 23 : 381–390. [CrossRef] [PubMed] [Google Scholar]
  33. Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004 ; 306 : 457–461. [CrossRef] [PubMed] [Google Scholar]
  34. Gregor MF, Yang L, Fabbrini E, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 2009 ; 58 : 693–700. [CrossRef] [PubMed] [Google Scholar]
  35. Puri P, Mirshahi F, Cheung O, et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 2008 ; 134 : 568–576. [CrossRef] [PubMed] [Google Scholar]
  36. Jurczak MJ, Lee AH, Jornayvaz FR, et al. Dissociation of inositol-requiring enzyme (IRE1alpha)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J Biol Chem 2012 ; 287 : 2558–2567. [CrossRef] [PubMed] [Google Scholar]
  37. Hage-Hassan R, Hainault I, Vilquin JT, et al. Endoplasmic reticulum stress does not mediate palmitate-induced insulin resistance in mouse and human muscle cells. Diabetologia 2012 ; 55 : 204–214. [CrossRef] [PubMed] [Google Scholar]
  38. Rieusset J, Chauvin MA, Durand A, et al. Reduction of endoplasmic reticulum stress using chemical chaperones or Grp78 overexpression does not protect muscle cells from palmitate-induced insulin resistance. Biochem Biophys Res Commun. 2012 ; 417 : 439–445. [CrossRef] [PubMed] [Google Scholar]
  39. Kammoun HL, Chabanon H, Hainault I, et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 2009 ; 119 : 1201–1215. [CrossRef] [PubMed] [Google Scholar]
  40. Ferre P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 2010 ; 12 : 83–92. [CrossRef] [PubMed] [Google Scholar]
  41. Lee AH, Scapa EF, Cohen DE, et al. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 2008 ; 320 : 1492–1496. [CrossRef] [PubMed] [Google Scholar]
  42. Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 2008 ; 118 : 316–332. [CrossRef] [PubMed] [Google Scholar]
  43. Xiao C, Giacca A, Lewis GF. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans. Diabetes 2011 ; 60 : 918–924. [CrossRef] [PubMed] [Google Scholar]
  44. Kars M, Yang L, Gregor MF, et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 2010 ; 59 : 1899–1905. [CrossRef] [PubMed] [Google Scholar]
  45. Cao SS, Kaufman RJ. Targeting endoplasmic reticulum stress in metabolic disease. Expert Opin Ther Targets 2013 ; 17 : 437–448. [CrossRef] [PubMed] [Google Scholar]
  46. Bouchecareilh M, Higa A, Fribourg S, et al. Peptides derived from the bifunctional kinase/RNase enzyme IRE1alpha modulate IRE1alpha activity and protect cells from endoplasmic reticulum stress. FASEB J 2011 ; 25 : 3115–3129. [CrossRef] [PubMed] [Google Scholar]
  47. Yusta B, Baggio LL, Estall JL, et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 2006 ; 4 : 391–406. [CrossRef] [PubMed] [Google Scholar]
  48. Franc C. Le diabète : des chiffres alarmants. Med Sci (Paris) 2013 ; 29 : 711–714. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Mancini AD, Poitout V. Les récepteurs membranaires aux acides gras de la cellule β. De nouvelles cibles thérapeutiques pour le traitement du diabète de type 2. Med Sci (Paris) 2013 ; 29 : 715–721. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Mendre C, Mouillac B. Chaperons pharmacologiques. Med Sci (Paris) 2013 ; 29 : 627–635. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.