Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 8-9, Août–Septembre 2013
Page(s) 765 - 771
Section Diabète : approches thérapeutiques émergentes
DOI https://doi.org/10.1051/medsci/2013298016
Publié en ligne 5 septembre 2013
  1. Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005 ; 115 : 1343–1351. [CrossRef] [PubMed]
  2. Byrne CD. Ectopic fat, insulin resistance and non-alcoholic fatty liver disease. Proc Nutr Soc 2013 ; 14 mai : 1–8. [CrossRef]
  3. Filhoulaud G, Guilmeau S, Dentin R, et al. Novel insights into ChREBP regulation and function. Trends Endocrinol Metab 2013 ; 24 : 257–268. [CrossRef] [PubMed]
  4. Dentin R, Pegorier JP, Benhamed F, et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem 2004 ; 279 : 20314–20326. [CrossRef] [PubMed]
  5. Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of ChREBP reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci USA 2004 ; 101 : 7281–7286. [CrossRef]
  6. H Yamashita, M. Takenoshita, M. Sakurai, et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci USA 2001 ; 98 : 9116–9121. [CrossRef]
  7. Ma L, Tsatsos NG, Towle HC. Direct role of ChREBP/Mlx in regulating hepatic glucose-responsive genes. J Biol Chem 2005 ; 280 : 12019–12027. [CrossRef] [PubMed]
  8. Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation dephosphorylation of the ChREBP. Proc Natl Acad Sci USA 2001 ; 98 : 13710–13715. [CrossRef]
  9. MV Li, W Chen, N Poungvarin, et al. Glucose-mediated transactivation of carbohydrate response element-binding protein requires cooperative actions from Mondo conserved regions and essential trans-acting factor 14–3-3. Mol Endocrinol 2008 ; 22 : 1658–1672. [CrossRef] [PubMed]
  10. Kabashima T, Kawaguchi, T, Wadzinski BE, Uyeda K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA 2003 ; 100 : 5107–5112. [CrossRef]
  11. Dentin R, Tomas-Cobos L, Foufelle F, et al. Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J Hepatol 2012 ; 56 : 199–209. [CrossRef] [PubMed]
  12. Li MV, Chen W, Harmancey RN, et al. Glucose-6-phosphate mediates activation of the ChREBP. Biochem Biophys Res Comm 2010 ; 395 : 395–400. [CrossRef]
  13. Li M, Chang B, Imamura M, Poungvarin N, Chan L. Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 2006 ; 55 : 1179–1189. [CrossRef] [PubMed]
  14. lizuka K, Horikawa Y. Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping. Biochem Biophys Res Commun 2008 ; 374 : 95–100. [CrossRef] [PubMed]
  15. Bricambert J, Miranda J, Benhamed F, et al. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest 2010 ; 120 : 4316–4331. [CrossRef] [PubMed]
  16. Guinez C, Filhoulaud G, Benhamed F, et al. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 2011 ; 60 : 1399–1413. [CrossRef] [PubMed]
  17. Sakiyama H, Fujiwara N, Noguchi T, et al. The role of O-linked GlcNAc modification on the glucose response of ChREBP. Biochem Biophys Res Commun 2010 ; 402 : 784–789. [CrossRef] [PubMed]
  18. Issad T, Kuo M. O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol Metab 2008 ; 19 : 380–389. [CrossRef] [PubMed]
  19. Kuo M, Zilberfarb V, Gangneux N, et al. O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett 2008 ; 582 : 829–834. [CrossRef] [PubMed]
  20. Housley MP, Rodgers JT, Udeshi ND, et al. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 2008 ; 283 : 16283–16292. [CrossRef] [PubMed]
  21. Dentin R, Hedrick S, Xie J, et al. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 2008 ; 319 : 1402–1405. [CrossRef] [PubMed]
  22. Housley MP, Udeshi ND, Rodgers JT, et al. A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J Biol Chem 2009 ; 284 : 5148–5157. [CrossRef] [PubMed]
  23. Herman MA, Peroni OD, Villoria J, et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 2012 ; 484 : 333–338. [CrossRef] [PubMed]
  24. Sun Z, Lazar MA. Dissociating fatty liver and diabetes. Trends Endocrinol Metab 2013 ; 24 : 4–12. [CrossRef] [PubMed]
  25. Dentin R, Benhamed F, Hainault I, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 2006 ; 55 : 2159–2170. [CrossRef] [PubMed]
  26. Iizuka K, Miller B, Uyeda K. Deficiency of a carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin deficient (ob/ob) mice. Am J Physiol 2006 ; 291 : E358–E364.
  27. Benhamed F, Denechaud PD, Lemoine M, et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 2012 ; 122 : 2176–2194. [CrossRef] [PubMed]
  28. Cherniske EM, Carpenter TO, Klaiman C, et al. Multisystem study of 20 older adults with Williams syndrome. Am J Med Genet A 2004 ; 131 : 255–264. [CrossRef] [PubMed]
  29. Hurtado del Pozo C, Vesperinas-Garcia G, Rubio MA, et al. ChREBP expression in the liver, adipose tissue and differentiated preadipocytes in human obesity. Biochim Biophys Acta 2011 ; 1811 : 1194–1200. [CrossRef] [PubMed]
  30. Kursawe R, Caprio S, Giannini C, et al. Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes : associations with insulin resistance and hyperglycemia. Diabetes 2013 ; 62 : 837–844. [CrossRef] [PubMed]
  31. Eissing L, Scherer T, Todter K, et al. De novo lipogenesis in human fat, liver is linked to ChREBP-beta, metabolic health. Nat Commun 2013 ; 4 : 1528. [CrossRef] [PubMed]
  32. Flamment M, Foufelle F. Le stress du réticulum endoplasmique : de la physiologie à la pathogenèse du diabète de type 2. Med Sci (Paris) 2013 ; 29 : 756–764. [CrossRef] [EDP Sciences] [PubMed]
  33. Mancini AD, Poitout V. Les récepteurs membranaires des acides gras de la cellule b : de nouvelles cibles thérapeutiques pour le traitement du diabète de type 2. Med Sci (Paris) 2013 ; 29 : 715–721. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.