Accès gratuit
Med Sci (Paris)
Volume 29, Numéro 8-9, Août–Septembre 2013
Page(s) 772 - 777
Section Diabète : approches thérapeutiques émergentes
Publié en ligne 5 septembre 2013
  1. Eckel-Mahan K, Sassone-Corsi P. Metabolism and the circadian clock converge. Physiol Rev 2013 ; 93 : 107–135. [CrossRef] [PubMed] [Google Scholar]
  2. Gatfield D, Le Martelot G, Vejnar CE, et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 2009 ; 23 : 1313–1326. [CrossRef] [PubMed] [Google Scholar]
  3. Kojima S, Gatfield D, Esau CC, Green CB., MicroRNA-122 modulates the rhythmic expression profile of the circadian deadenylase Nocturnin in mouse liver. PLoS One 2010 ; 5 : e11264. [CrossRef] [PubMed] [Google Scholar]
  4. Feng D, Liu T, Sun Z, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011 ; 331 : 1315–1319. [CrossRef] [PubMed] [Google Scholar]
  5. Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell 2012 ; 47 : 158–167. [CrossRef] [PubMed] [Google Scholar]
  6. Damiola F, Le Minh N, Preitner N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000 ; 14 : 2950–2961. [CrossRef] [PubMed] [Google Scholar]
  7. Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007 ; 6 : 414–421. [CrossRef] [PubMed] [Google Scholar]
  8. Arble DM, Bass J, Laposky AD, et al. W. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 2009 ; 17 : 2100–2102. [CrossRef] [PubMed] [Google Scholar]
  9. Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012 ; 15 : 848–860. [CrossRef] [PubMed] [Google Scholar]
  10. Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science 2005 ; 308 : 1043–1045. [CrossRef] [PubMed] [Google Scholar]
  11. Rudic RD, McNamara P, Curtis AM, et al. BMAL1, CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2004 ; 2 : e377. [CrossRef] [PubMed] [Google Scholar]
  12. Paschos GK, Ibrahim S, Song WL, et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med 2012 ; 18 : 1768–1777. [CrossRef] [PubMed] [Google Scholar]
  13. Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010 ; 466 : 627–631. [CrossRef] [PubMed] [Google Scholar]
  14. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 2008 ; 105 : 15172–15177. [CrossRef] [Google Scholar]
  15. Lamia KA, Papp SJ, Yu RT, et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011 ; 480 : 552–556. [PubMed] [Google Scholar]
  16. Zhang EE, Liu Y, Dentin R, et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 2010 ; 16 : 1152–1156. [CrossRef] [PubMed] [Google Scholar]
  17. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 2009 ; 106 : 4453–4458. [CrossRef] [Google Scholar]
  18. VanCauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 1997 ; 18 : 716–738. [CrossRef] [PubMed] [Google Scholar]
  19. Goumidi L, Grechez A, Dumont J, et al. Impact of REV-ERB alpha gene polymorphisms on obesity phenotypes in adult and adolescent samples. Int J Obes (Lond) 2013 ; 37 : 666–672. [CrossRef] [PubMed] [Google Scholar]
  20. Barker A, Sharp SJ, Timpson NJ, et al. Association of genetic loci with glucose levels in childhood and adolescence: a meta-analysis of over 6, 000 children. Diabetes 2011 ; 60 : 1805–1812. [CrossRef] [PubMed] [Google Scholar]
  21. Scott EM, Carter AM, Grant PJ. Association between polymorphisms in the clock gene, obesity and the metabolic syndrome in man. Int J Obes (Lond) 2008 ; 32 : 658–662. [CrossRef] [PubMed] [Google Scholar]
  22. Woon PY, Kaisaki PJ, Braganca J, et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci USA 2007 ; 104 : 14412–14417. [CrossRef] [Google Scholar]
  23. Wang XS, Armstrong ME, Cairns BJ, et al. Shift work and chronic disease: the epidemiological evidence. Occup Med (Lond) 2011 ; 61 : 78–89. [CrossRef] [PubMed] [Google Scholar]
  24. Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009 ; 324 : 651–654. [CrossRef] [PubMed] [Google Scholar]
  25. Nakahata Y, Sahar S, Astarita G, et al. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009 ; 324 : 654–657. [CrossRef] [PubMed] [Google Scholar]
  26. Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008 ; 134 : 317–328. [CrossRef] [PubMed] [Google Scholar]
  27. Asher G, Reinke H, Altmeyer M, et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 2010 ; 142 : 943–953. [CrossRef] [PubMed] [Google Scholar]
  28. Lamia KA, Sachdeva UM, Ditacchio L, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009 ; 326 : 437–440. [CrossRef] [PubMed] [Google Scholar]
  29. Kaasik K, Kivimae S, Allen JJ, et al. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 2013 ; 17 : 291–302. [CrossRef] [PubMed] [Google Scholar]
  30. Li MD, Ruan HB, Hughes ME, et al. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 2013 ; 17 : 303–310. [CrossRef] [PubMed] [Google Scholar]
  31. Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001 ; 293 : 510–514. [CrossRef] [PubMed] [Google Scholar]
  32. O’Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature 2011 ; 469 : 498–503. [CrossRef] [PubMed] [Google Scholar]
  33. Le Minh N, Damiola F, Tronche F, et al. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 2001 ; 20 : 7128–7136. [CrossRef] [PubMed] [Google Scholar]
  34. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 2010 ; 24 : 345–357. [CrossRef] [PubMed] [Google Scholar]
  35. Cho H, Zhao X, Hatori M, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature 2012 ; 485 : 123–127. [CrossRef] [PubMed] [Google Scholar]
  36. Bugge A, Feng D, Everett LJ, et al. Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function. Genes Dev 2012 ; 26 : 657–667. [CrossRef] [PubMed] [Google Scholar]
  37. Duez H, Staels B. Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler Thromb Vasc Biol 2010 ; 30 : 1529–1534. [CrossRef] [PubMed] [Google Scholar]
  38. Solt LA, Wang Y, Banerjee S, et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 2012 ; 485 : 62–68. [CrossRef] [PubMed] [Google Scholar]
  39. Solt LA, Burris TP. Action of RORs and their ligands in (patho)physiology. Trends Endocrinol Metab 2012 ; 23 : 619–627. [CrossRef] [PubMed] [Google Scholar]
  40. Yang X, Downes M, Yu RT, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 2006 ; 126 : 801–810. [CrossRef] [PubMed] [Google Scholar]
  41. Liu C, Li SM, Liu TH, et al. Transcriptional coactivator PGC-1a integrates the mammalian clock and energy metabolism. Nature 2007 ; 447 : 477–481. [CrossRef] [PubMed] [Google Scholar]
  42. Canaple L, Rambaud J, Dkhissi-Benyahya O, et al. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 2006 ; 20 : 1715–1727. [CrossRef] [PubMed] [Google Scholar]
  43. Wang N, Yang G, Jia Z, et al. Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 2008 ; 8 : 482–491. [CrossRef] [PubMed] [Google Scholar]
  44. Codogno P. Les gènes ATG et la macro-autophagie. Med Sci (Paris) 2004 ; 20 : 734–736. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Panda S, Antoch MP, Miller BH, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002 ; 109 : 307–320. [CrossRef] [PubMed] [Google Scholar]
  46. Ma D, Panda S, Lin JD. Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J 2011 ; 30 : 4642–4651. [CrossRef] [PubMed] [Google Scholar]
  47. Xiong X, Tao R, DePinho RA, Dong XC. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J Biol Chem 2012 ; 287 : 39107–39114. [CrossRef] [PubMed] [Google Scholar]
  48. Sachdeva UM, Thompson CB. Diurnal rhythms of autophagy: implications for cell biology and human disease. Autophagy 2008 ; 4 : 581–589. [PubMed] [Google Scholar]
  49. Woldt E, Sebti Y, Solt LA, et al. Rev-erb-a modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 2013 ; 19 : 1039–1046. [CrossRef] [PubMed] [Google Scholar]
  50. Delezie J, Pévet P, Challet E. Implication du gène d’horloge Reverba dans l'obésité. Med Sci (Paris) 2012 ; 28 : 687–689. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Teboul M, Delaunay F. Les récepteurs REVERBa et REVERBb donnent le tempo. Med Sci (Paris) 2012 ; 28 : 689–692. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Karamitri A, Vincens M, Chen M, Jockers R. Implication des mutations du récepteur de la mélatonine MT2 dans la survenue du diabète de type 2. Med Sci (Paris) 2013 ; 29 : 778–784. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.